ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • NATURE PUBLISHING GROUP  (1)
  • BioMed Central
  • GeoScienceWorld
  • Paleontological Society
  • 2015-2019  (2)
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Nature, NATURE PUBLISHING GROUP, 570, pp. 372-375, ISSN: 0028-0836
    Publication Date: 2020-03-05
    Description: The ocean—the Earth’s largest ecosystem—is increasingly affected by anthropogenic climate change1,2. Large and globally consistent shifts have been detected in species phenology, range extension and community composition in marine ecosystems3,4,5. However, despite evidence for ongoing change, it remains unknown whether marine ecosystems have entered an Anthropocene6 state beyond the natural decadal to centennial variability. This is because most observational time series lack a long-term baseline, and the few time series that extend back into the pre-industrial era have limited spatial coverage7,8. Here we use the unique potential of the sedimentary record of planktonic foraminifera—ubiquitous marine zooplankton—to provide a global pre-industrial baseline for the composition of modern species communities. We use a global compilation of 3,774 seafloor-derived planktonic foraminifera communities of pre-industrial age9 and compare these with communities from sediment-trap time series that have sampled plankton flux since ad 1978 (33 sites, 87 observation years). We find that the Anthropocene assemblages differ from their pre-industrial counterparts in proportion to the historical change in temperature. We observe community changes towards warmer or cooler compositions that are consistent with historical changes in temperature in 85% of the cases. These observations not only confirm the existing evidence for changes in marine zooplankton communities in historical times, but also demonstrate that Anthropocene communities of a globally distributed zooplankton group systematically differ from their unperturbed pre-industrial state.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-13
    Description: Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased toward the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (∼ 18–15 cal ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (∼ 21–19 cal ka B.P.) and the preindustrial era north of 30°N. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to 6 months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...