ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-05
    Description: The Southern Photometric Local Universe Survey (S-PLUS) is imaging ∼9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8 m robotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 $ m {mu m}$ pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel−1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| 〉 30°, 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, H δ, G band, Mg b triplet, H α, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r 〈 19.7 AB mag and z 〈 0.4, thus producing a 3D map of the local Universe over a volume of more than $1, (mathrm{Gpc}/h)^3$. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ∼336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-21
    Description: The deepest XMM–Newton mosaic map of the central 1 $_{.}^{\circ}$ 5 of the Galaxy is presented, including a total of about 1.5 Ms of EPIC-pn cleaned exposures in the central 15 arcsec and about 200 ks outside. This compendium presents broad-band X-ray continuum maps, soft X-ray intensity maps, a decomposition into spectral components and a comparison of the X-ray maps with emission at other wavelengths. Newly discovered extended features, such as supernova remnants (SNRs), superbubbles and X-ray filaments are reported. We provide an atlas of extended features within ±1° of Sgr A * . We discover the presence of a coherent X-ray-emitting region peaking around G0.1–0.1 and surrounded by the ring of cold, mid-IR-emitting material known from previous work as the ‘Radio Arc Bubble’ and with the addition of the X-ray data now appears to be a candidate superbubble. Sgr A's bipolar lobes show sharp edges, suggesting that they could be the remnant, collimated by the circumnuclear disc, of an SN explosion that created the recently discovered magnetar, SGR J1745–2900. Soft X-ray features, most probably from SNRs, are observed to fill holes in the dust distribution, and to indicate a direct interaction between SN explosions and Galactic centre (GC) molecular clouds. We also discover warm plasma at high Galactic latitude, showing a sharp edge to its distribution that correlates with the location of known radio/mid-IR features such as the ‘GC Lobe’. These features might be associated with an inhomogeneous hot ‘atmosphere’ over the GC, perhaps fed by continuous or episodic outflows of mass and energy from the GC region.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-05
    Description: We present an analysis of probability distribution functions (pdfs) of column density in different zones of the star-forming region Perseus and its diffuse environment based on the map of dust opacity at 353 GHz available from the Planck archive. The pdf shape can be fitted by a combination of a lognormal function and an extended power-law tail at high densities, in zones centred at the molecular cloud Perseus. A linear combination of several lognormals fits very well the pdf in rings surrounding the cloud or in zones of its diffuse neighbourhood. The slope of the mean-density scaling law 〈 〉 L L α is steep (α = –1.93) in the former case and rather shallow (α = –0.77 ± 0.11) in the rings delineated around the cloud. We interpret these findings as signatures of two distinct physical regimes: (i) a gravoturbulent one which is characterized by nearly linear scaling of mass and practical lack of velocity scaling; and (ii) a predominantly turbulent one which is best described by steep velocity scaling and by invariant for compressible turbulence $\langle \rho \rangle _L u_L^3/L$ , describing a scale-independent flux of the kinetic energy per unit volume through turbulent cascade. The gravoturbulent spatial domain can be identified with the molecular cloud Perseus while a relatively sharp transition to predominantly turbulent regime occurs in its vicinity.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-14
    Description: We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N -body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high-resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas-rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localized to the bulge of galaxy, but a substantial fraction takes place in the disc too. The inclusion of the hot gas reservoir in the galaxy model contributes to reducing the efficiency of bulge formation. Overall, our findings suggest that mergers are not as efficient as previously thought in transforming discs into bulges. This possibly alleviates some of the tensions between observations of bulgeless galaxies and the hierarchical scenario for structure formation.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-11
    Description: We examine simultaneous X-ray and UV light curves from multi-epoch 8 d XMM–Newton observations of the narrow line Seyfert 1 galaxy 1H 0707–495. The simultaneous observations reveal that both X-ray and UV emission are variable and that the amplitude of the X-ray variations is significantly greater than that of the UV variations in both epochs. Using a discrete correlation function the X-ray and UV light curves were examined for correlation on time-scales up to 7 d. Low-significance (~95 per cent confidence) correlations with the UV leading the X-ray variations are observed. The lack of a significant correlation between the UV and X-ray bands seems consistent with the X-ray source being centrally compact and dominated by light bending close to the black hole. In addition, multiband X-ray light curves were examined for correlations on similar time-scales. Highly significant (〉99.9 per cent confidence) correlations were observed at zero lag consistent with previous studies of this active galactic nucleus.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-21
    Description: The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc) 2   x  ±5 kpc region of a galactic disc, with a gas surface density of $\Sigma _{_{\rm GAS}} = 10 \;{\rm M}_{\odot }\,{\rm pc}^{-2}$ . The flash 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H 2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions ( peak ), in random locations with a Gaussian distribution in the vertical direction ( random ), in a combination of both ( mixed ), or clustered in space and time ( clus / clus2 ). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H 2 is strongly suppressed. For decreasing SN rates, the H 2 mass fraction increases significantly from 〈10 per cent for high SN rates, i.e. 0.5 dex above Kennicutt–Schmidt, to 70–85 per cent for low SN rates, i.e. 0.5 dex below KS. For an intermediate SN rate, clustered driving results in slightly more H 2 than random driving due to the more coherent compression of the gas in larger bubbles. Magnetic fields have little impact on the final disc structure but affect the dense gas ( n   10 cm –3 ) and delay H 2 formation. Most of the volume is filled with hot gas (~80 per cent within ±150 pc). For all but peak driving a vertically expanding warm component of atomic hydrogen indicates a fountain flow. We highlight that individual chemical species populate different ISM phases and cannot be accurately modelled with temperature-/density-based phase cut-offs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-21
    Description: We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we implement and test a vast majority of SPH improvement in the developer version of gadget -3. We use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-dependent scheme for artificial viscosity including high-order gradient computation and shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial conduction, which corrects for gravitationally induced pressure gradients and improves the SPH performance in capturing the development of gas-dynamical instabilities. We extensively test our new implementation in a wide range of hydrodynamical standard tests including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas clouds. We jointly employ all modifications; however, when necessary we study the performance of individual code modules. We approximate hydrodynamical states more accurately and with significantly less noise than standard gadget -SPH. Furthermore, the new implementation promotes the mixing of entropy between different fluid phases, also within cosmological simulations. Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We find galactic discs to be colder and more extended and galaxy clusters showing entropy cores instead of steadily declining entropy profiles. In summary, we demonstrate that our improved SPH implementation overcomes most of the undesirable limitations of standard gadget -SPH, thus becoming the core of an efficient code for large cosmological simulations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-21
    Description: The autism spectrum disorders (ASD) comprise a broad group of behaviorally related neurodevelopmental disorders affecting as many as 1 in 68 children. The hallmarks of ASD consist of impaired social and communication interactions, pronounced repetitive behaviors and restricted patterns of interests. Family, twin and epidemiological studies suggest a polygenetic and epistatic susceptibility model involving the interaction of many genes; however, the etiology of ASD is likely to be complex and include both epigenetic and environmental factors. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Here, we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate a genome-wide profile of striatal 5hmC in an autism mouse model ( Cntnap2 –/– mice) and found that at 9 weeks of age the Cntnap2 –/– mice have a genome-wide disruption in 5hmC, primarily in genic regions and repetitive elements. Annotation of differentially hydroxymethylated regions (DhMRs) to genes revealed a significant overlap with known ASD genes (e.g. Nrxn1 and Reln ) that carried an enrichment of neuronal ontological functions, including axonogenesis and neuron projection morphogenesis. Finally, sequence motif predictions identified associations with transcription factors that have a high correlation with important genes in neuronal developmental and functional pathways. Together, our data implicate a role for 5hmC-mediated epigenetic modulation in the pathogenesis of autism and represent a critical step toward understanding the genome-wide molecular consequence of the Cntnap2 mutation, which results in an autism-like phenotype.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-27
    Description: The adaptor protein-2 sigma subunit (AP22) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP22 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca 2+ o ) homeostasis. To elucidate the role of AP22 in Ca 2+ o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP22 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP22 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype–phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP22 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP22 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa x sMg/100 x CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP22 mutations to result in a more severe FHH phenotype with genotype–phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-27
    Description: Epidemiological studies have reported inconsistent associations between telomere length (TL) and risk for various cancers. These inconsistencies are likely attributable, in part, to biases that arise due to post-diagnostic and post-treatment TL measurement. To avoid such biases, we used a Mendelian randomization approach and estimated associations between nine TL-associated SNPs and risk for five common cancer types (breast, lung, colorectal, ovarian and prostate cancer, including subtypes) using data on 51 725 cases and 62 035 controls. We then used an inverse-variance weighted average of the SNP-specific associations to estimate the association between a genetic score representing long TL and cancer risk. The long TL genetic score was significantly associated with increased risk of lung adenocarcinoma ( P = 6.3 x 10 –15 ), even after exclusion of a SNP residing in a known lung cancer susceptibility region ( TERT-CLPTM1L ) P = 6.6 x 10 –6 ). Under Mendelian randomization assumptions, the association estimate [odds ratio (OR) = 2.78] is interpreted as the OR for lung adenocarcinoma corresponding to a 1000 bp increase in TL. The weighted TL SNP score was not associated with other cancer types or subtypes. Our finding that genetic determinants of long TL increase lung adenocarcinoma risk avoids issues with reverse causality and residual confounding that arise in observational studies of TL and disease risk. Under Mendelian randomization assumptions, our finding suggests that longer TL increases lung adenocarcinoma risk. However, caution regarding this causal interpretation is warranted in light of the potential issue of pleiotropy, and a more general interpretation is that SNPs influencing telomere biology are also implicated in lung adenocarcinoma risk.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...