ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2018
    Description: 〈p〉This review of the role of the mantle lithosphere in plate tectonic processes collates a wide range of recent studies from seismology and numerical modelling. A continually growing catalogue of deep geophysical imaging has illuminated the mantle lithosphere and generated new interpretations of how the lithosphere evolves. We review current ideas about the role of continental mantle lithosphere in plate tectonic processes. Evidence seems to be growing that scarring in the continental mantle lithosphere is ubiquitous, which implies a reassessment of the widely held view that it is the inheritance of crustal structure only (rather than the lithosphere as a whole) that is most important in the conventional theory of plate tectonics (e.g. the Wilson cycle). Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures and, as such, linked to the Wilson cycle and inheritance. We consider the current fundamental questions in the role of the mantle lithosphere in causing tectonic deformation, reviewing recent results and highlighting the potential of the deep lithosphere in infiltrating every aspect of plate tectonics processes.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-05-25
    Description: The margin of the northeastern Black Sea is formed by the Crimea and Kerch peninsulas, which separate it from the Azov Sea to the north. The age and architecture of the sedimentary successions in this area are described from exploration reflection seismic profiling acquired in the area, in addition to the regional DOBRE-2 CDP profile acquired in 2007. The sediments range in age from Mesozoic to Quaternary and can be divided into five seismo-stratigraphic complexes linked to the tectono-sedimentological evolution of the area. The present regional basin architecture consists of a series of basement structural highs separating a series of sedimentary depocentres and is mainly a consequence of the compressional tectonic regime affecting the area since the Eocene. This has focused shortening deformation and uplift along the axis of the Crimea–Caucasus Inversion Zone on the Kerch Peninsula and Kerch Shelf of the Black Sea. Two major sedimentary basins that mainly formed during this time – the Sorokin Trough in the Black Sea and the Indolo-Kuban Trough to the north of the Kerch Peninsula in the Azov Sea – formed as marginal troughs to the main inversion zone.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-09-30
    Description: New deep seismological data from Ellesmere Island and the adjacent Arctic continental margin provide new information about the crustal structure of the region. These data were not available for previous regional crustal models. This paper combines and redisplays previously published results – a gravity-derived Moho map and seismological results –to produce new maps of the Moho depth, the depth to basement and the crystalline crustal thickness of Ellesmere Island and contiguous parts of the Arctic Ocean, Greenland and Axel Heiberg Island. Northern Ellesmere Island is underlain by a thick crustal block (Moho at 41 km, c. 35 km crust). This block is separated from the Canada–Greenland craton in the south by a WSW–ENE-trending channel of thinned crystalline crust (Moho at 30–35 km, 〈20 km thick crust), which is overlain by a thick succession of metasedimentary and younger sedimentary rocks (15–20 km). The Sverdrup Basin in the west and the Lincoln Sea in the east interrupt the crustal architecture of central Ellesmere Island, which is interpreted to be more representative of its initial post-Ellesmerian Orogen structure, but with a later Sverdrup Basin and Eurekan overprint.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-03-06
    Description: Successful management of small pelagic fisheries is critical in integrated ecosystem based approaches and requires understanding of how the ecological dynamics of pelagic stocks mesh with the economic and social dynamics of commercial fisheries and the larger systems within which they operate. Combining insights from stock assessments with those from local fishers, scientists, and managers, can help identify knowledge gaps that could jeopardize stock resilience. This article presents results from a social-ecological, mixed-methods study that combines insights from science and from interviews with fishermen, scientists, and managers of small pelagic fisheries in western Newfoundland, Canada (NAFO division 4R) and in NAFO division 4X. Different approaches to herring management are used in the two areas. In area 4R fishing for herring ( Clupea harengus ) is part of a complex multi-species, multi-gear fishery; most harvesters who target herring also target Atlantic mackerel ( Scomber scombrus ). Harvester interviews indicate herring in 4R, like herring in 4X and elsewhere, have substantial within-species stock structure, but that it is not well-documented in science and not well protected under the current management system. Further, fishing strategies in the competitive mackerel fishery in which the herring vessels are involved may contribute to the risk of over-fishing on some herring populations.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-04-15
    Description: The Parnaíba Basin is a Phanerozoic intracontinental basin within the South America plate, lying on top of and within Precambrian terranes. The Parnaíba Basin Analysis Program wide-angle reflection–refraction (WARR) lies east–west and is 1150 km long profile crossing the basin and its margins. The WARR results show that the crust and uppermost mantle along the profile consist of the Amazonian Craton and Borborema Province, and the Grajaú and Teresina domains comprising the Parnaíba block hidden below the sedimentary cover of the basin itself. The lithospheric characteristics of the Parnaíba block and their differences from the adjacent Precambrian Amazonian Craton and Borborema Province elucidate some aspects of the present day existence of the sedimentary basin covering it. Important elements include the presence of a high mantle velocity and high-velocity lowermost crustal region, interpreted as linked to the intrusion of mafic material into the crust underlying the Grajaú domain, and indications that the crust in this area has been intruded since its consolidation in the Neoproterozoic. It is tentatively proposed that magmatism is related to the inferred thinning of the lower crust of the Teresina and Borborema segments of the profile, with this, in turn, linked to Cretaceous extensional tectonics and the opening of the South Atlantic Ocean. Supplementary material: Datasets and ray-tracing modelling for all 20 shot gather seismic sections from the WARR experiment of the Parnaíba Basin. Available at https://doi.org/10.6084/m9.figshare.c.4058582
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-11-19
    Description: Plate tectonic reconstructions are usually constrained by the correlation of lineaments of surface geology and crustal structures. This procedure is, however, largely dependent on and complicated by assumptions on crustal structure and thinning and the identification of the continent-ocean transition. We identify two geophysically and geometrically similar upper mantle structures in the North Atlantic and suggest that these represent remnants of the same Caledonian collision event. The identification of this structural lineament provides a sub-crustal piercing point and hence a novel opportunity to tie plate tectonic reconstructions. Further, this structure coincides with the location of some major tectonic events of the North Atlantic post-orogenic evolution such as the occurrence of the Iceland Melt Anomaly and the separation of the Jan Mayen microcontinent. We suggest that this inherited orogenic structure played a major role in the control of North Atlantic tectonic processes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Elevated topography is evident across the continental margins of the Atlantic. The Cumberland Peninsula, Baffin Island, formed as the result of rifting along the Labrador-Baffin margins in the late Mesozoic and is dominated by low relief high elevation topography. Apatite fission track (AFT) analysis of the landscape previously concluded that the area has experienced a differential protracted cooling regime since the Devonian; however, defined periods of cooling and the direct causes of exhumation were unresolved. This work combines the original AFT data with 98 apatite new (U-Th)/He ages from 16 samples and applies the newly developed ‘broken crystals’ technique to provide a greater number of thermal constraints for thermal history modelling to better constrain the topographic evolution. The spatial distribution of AFT and AHe ages implies exhumation has been significant toward the SE (Labrador) coastline, while results of thermal modelling outline three notable periods of cooling in the pre-rift (460 Ma – 200 Ma), from syn-rift to present (120 Ma – 0 Ma) and within post-rift (30 Ma – 0 Ma) stages. Pre-rift cooling is interpreted as the result of exhumation of Laurentia, syn-rift cooling as the result of rift flank uplift to the SE and differential erosion of landscape, while the final post-rift period is likely an artefact of the modelling process. These results suggest the source of the Cumberland Peninsula's modern-day elevated topography is uplift during rifting in the Cretaceous and the isostatic compensation following continuous Mesozoic and Cenozoic differential erosion. This work highlights the how interaction of rift tectonics and isostasy can be the principal source for modern elevated continental margins, while also providing insight into the pre-rift exhumational history of central Laurentia.〈strong〉Supplementary material:〈/strong〉〈a href="https://doi.org/10.6084/m9.figshare.c.4528409"〉https://doi.org/10.6084/m9.figshare.c.4528409〈/a〉〈/span〉
    Print ISSN: 0370-291X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Recently an ambitious experiment combining deep seismic surveys from near-vertical and wide-angle acquisition methods was carried out in Brazil. The seismic lines are essentially coincident and crossed the Parnaíba Basin from west to east near latitude 5° S. Here, the wide-angle reflection and refraction (WARR) and deep seismic reflection (DSR) results, which were previously interpreted independently, are compared by directly correlating WARR interfaces converted to TWTT with the major reflective horizons identified in the zero-offset image and by considering coincident reflectivity patterns displayed in both data sets. This integrated WARR and DSR analysis allowed a spatial association of the apparently acoustically featureless crust imaged in the DSR profile to the high reflectivity observed in the WARR data. Numerical tests and elastic modelling show that variations of the elastic properties of the crust, particularly as they are characterised by low 〈span〉V〈/span〉p and 〈span〉V〈/span〉s contrasts with a possible increase of the 〈span〉V〈/span〉p/〈span〉V〈/span〉s ratio, can only weakly explain the observed reflectivity patterns but that fine-scale lithological heterogeneity within the crust is capable of replicating the observed contrasting seismic responses. The segment of the Parnaíba Basin crust that is characterised by fine-scale lithological heterogeneity lies directly above a mafic crustal underplate defined by the WARR model and was named as the Grajaú domain on the basis of WARR-derived velocity model. The applied methodologies allow added value to be taken from the independent seismic datasets and provide new information about crustal structure that may have important implications for overlying intracontinental basin evolution.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-03-06
    Description: This review of the role of the mantle lithosphere in plate tectonic processes collates a wide range of recent studies from seismology and numerical modelling. A continually growing catalogue of deep geophysical imaging has illuminated the mantle lithosphere and generated new interpretations of how the lithosphere evolves. We review current ideas about the role of continental mantle lithosphere in plate tectonic processes. Evidence seems to be growing that scarring in the continental mantle lithosphere is ubiquitous, which implies a reassessment of the widely held view that it is the inheritance of crustal structure only (rather than the lithosphere as a whole) that is most important in the conventional theory of plate tectonics (e.g. the Wilson cycle). Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures and, as such, linked to the Wilson cycle and inheritance. We consider the current fundamental questions in the role of the mantle lithosphere in causing tectonic deformation, reviewing recent results and highlighting the potential of the deep lithosphere in infiltrating every aspect of plate tectonics processes.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-05-25
    Description: The crustal seismic velocity model (based on receiver functions) of Ellesmere Island and the structural geological cross-section of Ellesmere Island, both documented and discussed elsewhere in this volume, are here integrated into a crustal-scale transect crossing all the main tectonic domains. The velocity model satisfies much of the observed gravity field, but implies minor modifications with potentially important implications for characterizing the lower crust over the transect. The crust of the Pearya Terrane includes a high-velocity and high-density lower crustal body, suggested to represent a mafic underplate linked to the emplacement of the High Arctic Large Igneous Province. A similar body also lies directly beneath the Hazen Plateau, but this is more likely to be inherited from earlier tectonic stages than to be linked to the High Arctic Large Igneous Province. A large-scale basement-involving thrust, possibly linked to a deep detachment of Ellesmerian age, lies immediately south of the Pearya Terrane and forms the northern backdrop to a crustal-scale pop-up structure that accommodates Eurekan-aged shortening in northern Ellesmere Island. The thickest crust and deepest Moho along the transect are below the Central Ellesmerian fold belt, where the Moho is flexured downwards to the north to a depth of about 48 km beneath the load of the structurally thickened supracrustal strata of the fold belt.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...