ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (1)
  • Computer Operations and Hardware; Geosciences (General)  (1)
  • Ischia  (1)
  • 2015-2019  (3)
  • 1960-1964
  • 1
    Publication Date: 2019-07-13
    Description: This paper discusses the Ontology-driven Interactive Search Environment for Earth Sciences (ODISEES) project currently being developed to aid researchers attempting to find usable data among an overabundance of closely related data. ODISEES' ontological structure relies on a modular, adaptable concept modeling approach, which allows the domain to be modeled more or less as it is without worrying about terminology or external requirements. In the model, variables are individually assigned semantic content based on the characteristics of the measurements they represent, allowing intuitive discovery and comparison of data without requiring the user to sift through large numbers of data sets and variables to find the desired information.
    Keywords: Computer Operations and Hardware; Geosciences (General)
    Type: NF1676L-21600 , World Congress in Computer Science, Computer Engineering, and Applied Computing; Jul 27, 2015 - Jul 30, 2015; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-14
    Description: The GPS results are of utmost relevance for the study of the complex plate boundary geodynamics. The lithosphere strain partitioning is part of the seismic cycle. We present the first GPS kinematic pattern obtained during the interseismic phase by a dense episodic GPS network, the Southern Apennine Geodetic Network - SAGNet (Sepe et al., 2009), in the time span 2002-2013. This network is located across the transition zone between central and southern Apennine, including Meta-Mainarde-Venafro and AltoMolise-Sannio-Matese mounts. This region is characterized by seismogenic fault systems responsible, in the past, for several destructive earthquakes of intensity I ≥ IX MCS and, in more recent years, characterised mainly by some moderate magnitude seismic sequences (max magnitude Mw 5.0, December 29 2013) and single small events (Ml 〈 2.5).SAGNet GPS data were processed by BERNESE sw v.5.0 and the resulting velocities were least-squares combined with the permanent stations velocity field and with the velocity solution of Giuliani et al. 2009. The combined GPS velocity field, shows a perpendicular maximum extension with respect to the Apennine chain of about 2.0 mm/y.The Matese area was hit on December 29, 2013 by a Mw=5.0 (Convertito et al., 2016) earthquake. It was followed by an intense seismic activity until the beginning of February 2014. After the mainshock a GPS survey was carried out on the SAGnet stations. We collected data from 2013, 30 December to 2014, 4 April. The time series of 17 stations are affect by an offsets on the linear drift. The map of horizontal coseismic displacements (Figure 3) shows a sub-radial displacement shape with respect to the epicentre. Larger displacements are observed in correspondence of NE portion of the Matese massif. Considering the Matese Lake Fault as the probable source of the mainshock (dip 65°, strike 116, rake 270 – MLF, Ferranti et al, 2015), we found that the Okada modelling does not fit the observed displacements and only a small fraction of displacements are resolved with a simple slip.Figure 4 resembles the results of previous studies compared with our GPS analysis. We considered seismological analyses, tomographic models, degassing of CO2 data and conceptual model of processes recognized in South Apennine (L. Bisio, et al., 2004; Chiarabba and Chiodini, 2013; Improta et al., 2014; Ventura et al., 2007, R. Di Stefano and M.G. Ciaccio, 2014; Ferranti et al., 2015; Convertito et al., 2016;). The GPS results indicate that the relative motion between Eurasia and Adria plates is responsible of the active deformation in the Apennines. The most important outcomes of this study are: (i) During the interseismic phase the differential motion between Adriatic and Tyrrhenian domains seems to be accommodated in a narrow belt bordering the westward flank of the Sannio Mts, showing a 2 mm/y extension. (ii) The maximum extension does not follow the topographic high of the chain but is shifted toward the eastern outer belt. (iii) No significant GPS deformation is highlighted in correspondence of major and known fault systems where the GPS velocities appear almost steady. We propose that the observed coseismic displacements are only marginally explained by a slip on the MLF fault. The vertical directivity and depth distribution of the seismic sequence (Convertito et al., 2016), the vertical and horizontal heterogeneity of lower crust and upper mantle (Bisio et al., 2004; Di Stefano and Ciaccio, 2014), the high flux of CO2 degassing (Ventura et al., 2007, Chiarabba e Chiodini, 2013 ), the probable presence of pressurized CO2 bodies fed by fluids uprising from the mantle wedge (Improta et al.,2014 ), suggest instead that the seismic sequence could be caused by sub-vertical cracks that originate at the Moho interface and reach the bottom of the seismogenic layer (10km depth).
    Description: DPC
    Description: Unpublished
    Description: San Francisco (USA)
    Description: 2T. Tettonica attiva
    Description: open
    Keywords: GPS, Deformation, Active extension ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-18
    Description: Ischia is an active volcanic complex, which erupted the last time in 1302. Its recent geological history is dominated by the earthquake of 1883, which seriously affected Casamicciola Terme, and the other municipalities of the island. On 21st Agust 2017, the Md=4.0 earthquake located below the town of Casamicciola Terme addressed the media attention to this volcanic island that was seismically monitored since 1885 by Giulio Grablovitz (1846-1928) who installed a seismic tank (an instrument capable of measuring and recording on paper the oscillations of the water contained in a tank, with respect to the ground) in the Casamicciola Observatory. The Osservatorio Vesuviano is the INGV division charged of the Ischia monitoring. The first seismic station was installed in Casamicciola Observatory in 1993 and since then the seismic monitoring of the island is going up. The real time monitoring of this volcanic island involves several geophysical fields and the data are transmitted by a wide data-communication wired on radio infrastructure to the Monitoring Centre of Osservatorio Vesuviano: - The seismic network counts of 4 station sites with velocimetric, accelerometric and infrasonic sensors. The data are sent in real time to the Monitoring Centre. - The GPS network counts of 6 stations located on the island. All the procedures for remote stations managing (raw data downloading, data quality control and data processing) take place automatically and the computed data are shown in the Monitoring Centre. - The tiltmetric network consist of 3 digital borehole stations distributed around the island. Each tiltmetric station is equipped with a temperature and magnetic sensor.
    Description: Published
    Description: Vienna, Austria
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Keywords: monitoring ; Ischia ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...