ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Disease Models, Animal  (2)
  • Nature Publishing Group (NPG)  (2)
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • National Academy of Sciences
  • 2015-2019  (2)
  • 1960-1964
Collection
Publisher
  • Nature Publishing Group (NPG)  (2)
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • National Academy of Sciences
Years
  • 2015-2019  (2)
  • 1960-1964
Year
  • 1
    Publication Date: 2016-03-17
    Description: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847731/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847731/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Dheeraj S -- Arons, Autumn -- Mitchell, Teryn I -- Pignatelli, Michele -- Ryan, Tomas J -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 24;531(7595):508-12. doi: 10.1038/nature17172. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982728" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alzheimer Disease/*pathology/*physiopathology ; Amnesia/pathology/physiopathology ; Amyloid beta-Protein Precursor/genetics ; Animals ; Dendritic Spines/pathology/physiology ; Dentate Gyrus/*cytology/pathology/*physiology/physiopathology ; *Disease Models, Animal ; Early Medical Intervention ; Humans ; Long-Term Potentiation ; Male ; Memory, Episodic ; Memory, Long-Term/*physiology ; Mice ; Mice, Transgenic ; Optogenetics ; Plaque, Amyloid ; Presenilin-1/genetics ; Synapses/metabolism ; Transgenes/genetics ; tau Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-26
    Description: Methyl-CpG binding protein 2 (MeCP2) has crucial roles in transcriptional regulation and microRNA processing. Mutations in the MECP2 gene are found in 90% of patients with Rett syndrome, a severe developmental disorder with autistic phenotypes. Duplications of MECP2-containing genomic segments cause the MECP2 duplication syndrome, which shares core symptoms with autism spectrum disorders. Although Mecp2-null mice recapitulate most developmental and behavioural defects seen in patients with Rett syndrome, it has been difficult to identify autism-like behaviours in the mouse model of MeCP2 overexpression. Here we report that lentivirus-based transgenic cynomolgus monkeys (Macaca fascicularis) expressing human MeCP2 in the brain exhibit autism-like behaviours and show germline transmission of the transgene. Expression of the MECP2 transgene was confirmed by western blotting and immunostaining of brain tissues of transgenic monkeys. Genomic integration sites of the transgenes were characterized by a deep-sequencing-based method. As compared to wild-type monkeys, MECP2 transgenic monkeys exhibited a higher frequency of repetitive circular locomotion and increased stress responses, as measured by the threat-related anxiety and defensive test. The transgenic monkeys showed less interaction with wild-type monkeys within the same group, and also a reduced interaction time when paired with other transgenic monkeys in social interaction tests. The cognitive functions of the transgenic monkeys were largely normal in the Wisconsin general test apparatus, although some showed signs of stereotypic cognitive behaviours. Notably, we succeeded in generating five F1 offspring of MECP2 transgenic monkeys by intracytoplasmic sperm injection with sperm from one F0 transgenic monkey, showing germline transmission and Mendelian segregation of several MECP2 transgenes in the F1 progeny. Moreover, F1 transgenic monkeys also showed reduced social interactions when tested in pairs, as compared to wild-type monkeys of similar age. Together, these results indicate the feasibility and reliability of using genetically engineered non-human primates to study brain disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Zhen -- Li, Xiao -- Zhang, Jun-Tao -- Cai, Yi-Jun -- Cheng, Tian-Lin -- Cheng, Cheng -- Wang, Yan -- Zhang, Chen-Chen -- Nie, Yan-Hong -- Chen, Zhi-Fang -- Bian, Wen-Jie -- Zhang, Ling -- Xiao, Jianqiu -- Lu, Bin -- Zhang, Yue-Fang -- Zhang, Xiao-Di -- Sang, Xiao -- Wu, Jia-Jia -- Xu, Xiu -- Xiong, Zhi-Qi -- Zhang, Feng -- Yu, Xiang -- Gong, Neng -- Zhou, Wen-Hao -- Sun, Qiang -- Qiu, Zilong -- England -- Nature. 2016 Feb 4;530(7588):98-102. doi: 10.1038/nature16533. Epub 2016 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China. ; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China. ; Department of Child Healthcare, Children's Hospital of Fudan University, Shanghai 201102, China. ; Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26808898" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Anxiety/genetics/psychology ; Autistic Disorder/*genetics/metabolism/physiopathology/*psychology ; Brain/metabolism ; Cognition/physiology ; *Disease Models, Animal ; Female ; Germ-Line Mutation/*genetics ; Heredity/*genetics ; Humans ; Locomotion/genetics/physiology ; Macaca fascicularis ; Male ; Methyl-CpG-Binding Protein 2/*genetics/*metabolism ; Phenotype ; Social Behavior ; Sperm Injections, Intracytoplasmic ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...