ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing
  • Polymer and Materials Science
  • 2015-2019  (13)
  • 1965-1969  (1)
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Letters 5 (1967), S. 469-470 
    ISSN: 0449-2986
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Northwest India Aquifer (NWIA) has been shown to have the highest groundwater depletion (GWD) rate globally, threatening crop production and sustainability of groundwater resources. Gravity Recovery and Climate Experiment (GRACE) satellites have been emerging as a powerful tool to evaluate GWD with ancillary data. Accurate GWD estimation is, however, challenging because of uncertainties in GRACE data processing. We evaluated GWD rates over the NWIA using a variety of approaches, including newly developed constrained forward modeling resulting in a GWD rate of 3.1 plus or minus 0.1 centimeters per acre (or 14 plus or minus 0.4 cubic kilometers per acre) for Jan 2005-Dec 2010, consistent with the GWD rate (2.8 centimeters per acre or 12.3 cubic kilometers per acre) from groundwater-level monitoring data. Published studies (e.g., 4 plus or minus 1 centimeter per acre or 18 plus or minus 4.4 cubic kilometers per acre) may overestimate GWD over this region. This study highlights uncertainties in GWD estimates and the importance of incorporating a priori information to refine spatial patterns of GRACE signals that could be more useful in groundwater resource management and need to be paid more attention in future studies.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31611 , Scientific Reports; 6; 24398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: The NASA Goddard Earth Sciences Data and Information Services Center archives tens of thousands of Earth Observation (EO) parameters for land, atmosphere, and ocean. To facilitate GIS users to easily find, visualize, obtain, and analyze these EO data through, we developed an ArcGIS infrastructure with the Server, image services, Portal, and AOL. We will show how this capability supports broad GIS applications. Use cases including water management and air quality analyses will be demonstrated.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70787 , 2019 Esri User Conference; Jul 08, 2019 - Jul 12, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: NASA Earth Science (ES) data is essential to a wide range of GIS research and applications. However, for many GIS users, searching, accessing, using and analyzing NASA ES data can be of a great challenge- ranging from the sheer data volumes, types of science parameters, and to the complexity of data encoding formats. As one of the twelve NASA Science Mission Directorate (SMD) Data Centers, Goddard Earth Sciences (GES) Data and Information Services Center (DISC) archives and distributes petabytes of ES parameters covering atmosphere, land, and ocean fields. Most data are multidimensional and multi-spatiotemporal in nature and are encoded in different science data formats (e.g, HDF, HDF-EOS, netCDF, GRIB, binary), which usually contain multiple variables and different metadata information. By far, GES DISC has been developing a number of services and online tools to help GIS users to easily explore our data products. In this presentation, we will describe our ArcGIS-based data accessing and visualization services and portals, which allow users directly exploring the multi-spatiotemporal ES data in ArcGIS clients without having to pre-download/import the data. The ArcGIS services are also compliant with the Open Geospatial Consortium (OGC) Web Coverage Service (WCS) and Web Map Service (WMS) protocols and can be accessed by any other WCS/WMS clients to get customized GES DISC EO data on-the-fly from such services.
    Keywords: Earth Resources and Remote Sensing
    Type: IN53D-0638 , GSFC-E-DAA-TN64637 , American Geophysical Union (AGU) Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Social media data streams are important sources of real-time and historical global information for science applications. At the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we are exploring the Twitter data stream for its potential in augmenting the validation program of NASA Earth science missions, specifically the Global Precipitation Measurement (GPM) mission. We have implemented a tweet processing infrastructure that outputs classified precipitation tweets. Inputs are "passive" tweets, along with a smaller number of tweets from "active" participants, i.e., those knowingly contributing to our effort. The "active" tweets, presumably of higher quality, enrich the Twitter stream. "Active" sources include data scraped from other social media (e.g., public Facebook posts) and data from existing crowdsourcing programs (e.g., mPING reports). In addition, there is likely relevant precipitation information in images and documents that are the end points of links often included in tweets. Information derived from these "active" sources could then be tweeted into the Twitter stream, thus enriching its quality. The objective of our current work is to mine these tweet linked images and documents, using neural networks, to increase the information content and quality related to precipitation. For images, we classified them as either precipitation-related or not. For training and validation, we used images obtained via the Google custom search API. We created two models: (1) by training a simple Convolutional Neural Network and (2) by using transfer learning principles to adapt a pre-trained object recognition model. For documents, both those linked to tweets and the tweet contents, we trained Hierarchical Attention Networks to determine precipitation occurrence, type, and intensity. For training and validation, we used a keyword-filtered tweet data set labelled with ground truth data from Dark Sky (an API to retrieve weather-related labels) and the National Severe Storms Laboratory's Multi Radar/Multi-Sensor (MRMS) system. Our results demonstrated the efficacy of our machine learning approaches for enriching the Twitter stream, to derive information potentially useful for validation of earth science satellite data.
    Keywords: Earth Resources and Remote Sensing
    Type: NH43B-2988 , GSFC-E-DAA-TN63898 , American Geophysical Union (AGU) Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: NASA satellite Earth Observation (EO) data are critical to a wide range of GIS research and applications. Yet the EO data are usually very complex in terms of science contents, formats, and spatiotemporal granularities, making them difficult to use for many GIS analysts. We'll show in this presentation how to easily obtain and analyze NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) EO data through ArcGIS's data/image services and Web GIS capabilities.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN59599 , Esri User Conference; Jul 09, 2018 - Jul 13, 2018; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-27
    Description: An assessment of differing boundary/mixed-layer height measurement methods was performed with a focus on the Vaisala CL51 instrument and BLView and STRAT softwares. Of primary interest was determining how these differ- ng methodologies will intercompare when deployed as part of a larger instrument network. The intercomparisons were performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in the Denver, CO area. It was observed that data collection methodology is not as important as the processing algorithm, and that, generally speaking, sonde-derived boundary layer heights are higher than LIDAR-derived mixed-layer heights.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-25290 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 10; 10; 3963-3983
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-26
    Description: NASA maintains and operates a global network of Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and Global Navigation Satellite System (GNSS) ground stations as part of the NASA Space Geodesy Program. The NASA Space Geodesy Network (NSGN) provides the geodetic products that support Earth observations and the related science requirements as outlined by the US National Research Council (NRC 2010, 2018). The Global Geodetic Observing System (GGOS) and the NRC have set an ambitious goal of improving the Terrestrial Reference Frame (TRF) to have an accuracy of 1 millimeter and stability of 0.1 millimeters per year, an order of magnitude beyond current capabilities. NASA and its partners within GGOS are addressing this challenge by planning and implementing modern geodetic stations co-located at existing and new sites around the world. In 2013, NASA demonstrated the performance of its next-generation systems at the prototype next-generation core site at NASA's Goddard Geophysical and Astronomical Observatory in Greenbelt, Maryland. Implementation of a new broadband VLBI station in Hawaii was completed in 2016. NASA is currently implementing new VLBI and SLR stations in Texas and is planning the replacement of its other aging domestic and international legacy stations. In this article, we describe critical gaps in the current global network and discuss how the new NSGN will expand the global geodetic coverage and ultimately improve the geodetic products. We also describe the characteristics of a modern NSGN site and the capabilities of the next-generation NASA SLR and VLBI systems. Finally, we outline the plans for efficiently operating the NSGN by centralizing and automating the operations of the new geodetic stations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN61920 , Journal of Geodesy (ISSN 0949-7714) (e-ISSN 1432-1394); 93; 11; 2263–2273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-01
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: JPL-CL-16-2759 , International Workshop on Greenhouse Gas Measurements from Space; Jun 07, 2016 - Jun 09, 2016; Kyoto; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN26013 , Remote Sensing Environment (ISSN 0034-4257); 168; 177-193
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...