ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Campi Flegrei caldera  (3)
  • 1631 sub-Plinian eruption.  (1)
  • 2015-2019  (4)
  • 1970-1974
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2020-12-17
    Description: The Agnano–Monte Spina tephra AMST , dated at 4100 years BP by Arr Ar and C AMS techniques, is the product of the highest-magnitude eruption in the Campi Flegrei caldera CFc. during its last epoch of activity 4800–3800 years BP.. The sequence alternates magmatic and phreatomagmatic pyroclastic-fallout, -flow and -surge beds and bedsets. Two main pumice-fallout deposits with variable easterly-to-northeasterly dispersal axes are about 10 cm thick at 42 km from the vent area. High particle concentration pyroclastic currents were confined to the caldera depression; lower concentration flows overtopped the morphological boundary of the caldera and traveled at least 15 km over the surrounding plain. The unit is subdivided into six members, named A through F in stratigraphic sequence, based upon their sedimentological characteristics. Isopachs and isopleths maps suggest a vent location in the Agnano plain. A volcano-tectonic collapse begun during the course of the eruption, took place along the faults of the northeastern sector of the resurgent block within the CFc, and generated the Agnano plain. The early erupted trachytic magma had a homogeneous alkali–trachytic composition, whereas later-erupted magma shows small-scale hetereogeneities. Trace elements and Sr-isotope compositions, indicate that two isotopically distinct magmas, one alkali–trachytic and the other trachytic, were tapped and partially mixed during the eruption. The small volume 1.2 km3 DRE. of erupted magma and the structural position of the vent suggest that the eruption was fed by a dyke intruded along a normal fault in the sector of the resurgent block under a tensional stress regime. q1999 Elsevier Science B.V. All rights reserved
    Description: Published
    Description: 269–301
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Agnano–Monte Spina tephra ; Campi Flegrei caldera ; magma ; pyroclastic-fallout; pumice ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-14
    Description: Volcanic risk at Vesuvius is one of the highest in the world due to the ~670,000 inhabitants living in the Red Zone, the area exposed to both pyroclastic flows and tephra fallout, to be evacuated before renewal of any eruptive activity. The national emergency plan for Vesuvius builds its risk zonation on a scenario similar to the last sub-Plinian eruption, which occurred in 1631. This study aims at providing new insights on the geometry of the caldera associated with this historical eruption. The impact of past Vesuvius eruptions on present-day soil CO2 concentration has been investigated by means of an extended geochemical survey carried out for identifying the circulation pathways of hydrothermal fluids inside the volcano. We performed 4,018 soil CO2 concentration measurements over the whole Somma-Vesuvius volcanic complex, covering an area of 50 km2. Besides relatively low values, the results show a significant spatial CO2 concentration heterogeneity over Somma-Vesuvius ranging from the atmospheric value (~400 ppm) up to ~24,140 ppm. The summit of Vesuvius shows an area with anomalous CO2 concentrations well matching the crater rim of the 1906 eruption. Along the cone flanks, secondary CO2 anomalies highlight a roughly circular preferential pathway detected along 8 radial profiles at distances between ~840 m and ~1,150 m from the bottom of the present-day crater resulting from the last eruption in 1944. In depth review of the available literature highlights an agreement between this circle-like shaped anomaly and the 1631 sub-Plinian eruption caldera boundary. Indeed, based on the historical chronicles the depression produced by the 1631 eruption had a diameter of 1,686 m, whereas the CO2 circular anomaly indicates a diameter of 1,956 m. Finally, the results were compared with a 3-D density model obtained from a recent gravity survey that corroborates both the literature and the CO2 data in terms of potential buried structure at the base of the Vesuvius cone.
    Description: Published
    Description: 43-56
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Somma-Vesuvius ; soil CO2 concentration ; 1631 sub-Plinian eruption. ; carbon dioxide ; caldera. ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-28
    Description: The Campi Flegrei caldera is a restless, nested structure resulting from two major collapses related to the Campanian Ignimbrite 37,000 years BP. and the Neapolitan Yellow Tuff 12,000 years BP. eruptions, respectively. Detailed stratigraphical, structural, volcanological and 14C AMS. geochronological studies, devoted to the reconstruction of the volcanic and deformational history of the Campi Flegrei caldera in the past 12,000 years have been carried out. The results of these studies show that in this time span, intense both volcanic and volcano-tectonic activity was confined inside the Neapolitan Yellow Tuff caldera. Volcanism was concentrated in epochs of intense activity, alternating to periods of quiescence. The I epoch lasted from 12,000 to 9500 years BP giving rise to 34 explosive eruptions, each every 70 years on average. During the II epoch, dated between 8600 and 8200 years BP, six explosive eruptions took place at an average interval of 65 years. The III epoch lasted from 4800 to 3800 years BP and produced 16 explosive and four effusive eruptions which followed each other at mean intervals of 50 years. Eruption vents of the I epoch were located mostly along the marginal faults of the Neapolitan Yellow Tuff caldera, while those of the II epoch aligned on the northeastern sector of this margin. During the III epoch volcanism was confined in the northeastern sector of the Neapolitan Yellow Tuff caldera floor. The caldera floor is disjointed in blocks with variable vertical movements by fault and fracture systems mainly trending NE–SW and NW–SE. The still active resurgence of the caldera floor began soon after its collapse. Onset of both II and III epoch of activity coincides with increase in resurgence rate of La Starza marine terrace, the most uplifted part of the resurgent block.
    Description: Published
    Description: 221-246
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; volcanism; ; deformation ; chronostratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: New geochemical and Sr-isotope data have been acquired on samples representative of volcanic units erupted inside the resurgent Campi Flegrei caldera CFc. over the past 12 ka. These data, integrated with previous published petrological, and with newly acquired geochronological, volcanological and geothermal data, shed light on the nature and timing of the processes that controlled the evolution of the Phlegraean magmatic system. In the past 12 ka, three isotopically and geochemically distinct magmatic components were erupted at the CFc as either homogeneous or mixed magma batches. One component, Campanian Ignimbrite component CIc. 87Srr86Srs0.70735–0.70740., is similar to the trachytic magma extruded during the first phase of the Campanian Ignimbrite CI. eruption 37 ka.. A second component, Neapolitan Yellow Tuff component NYTc. 87Srr86Srs0.70750–0.70757., is similar to the latitic–alkali–trachytic magma batches extruded during the course of the Neapolitan Yellow Tuff NYT. eruption 12 ka.. A third component, Minopoli component MIc. 87Srr86Srf0.7086., is similar to the trachybasaltic magma of the Minopoli 2 MI. eruption 9.7 ka.. These components were erupted as either single batches of magma, or mixed CI–NYT or MI–NYT batches of magma, through vents located either along the structural boundary of the NYT caldera or inside the NYT caldera, mainly on portions of the resurgent block under extensional stress. The CI and NYT components represent residual portions of older, large-volume magma reservoirs which have fed eruptions since about 60 and 15 ka, respectively. The least-evolved MI component was erupted only during the 12–9.5 ka and 8.6–8.2 ka epochs of activity, through vents located on a NE–SW regional fault system. This component could represent a deeper reservoir tapped by the NE–SW regional fault system reactivated after the NYT caldera collapse. Deeper MI and shallower CI and NYT magmatic systems interacted by mixing among batches of magma during their rise to surface. Overall, the data suggest that the CFc magmatic system today is characterized by the presence of two larger, independent reservoirs, filled by residual portions of the CI and NYT magmas. These generated many smaller, shallower pockets of evolved magma, that fed most of the eruptions that occurred in the CFc over the past 12 ka. Moreover, a deeper reservoir MI., tapped by the NE–SW regional fault system, provided batches of less-evolved magma that mixed with magma present in the shallower pockets. q1999 Elsevier Science B.V. All rights reserved.
    Description: Published
    Description: 247–268
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; magmatic system ; isotopic disequilibrium ; magma mixing ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...