ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (44)
  • 2015-2019  (44)
  • 1970-1974
  • 1910-1914
  • 1
    Publication Date: 2015-10-27
    Description: This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch’s ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches’ ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-29
    Description: The occurrence of waterborne parasites coupled with water parameters at various processing sites of two drinking water treatment plants (A and B) and seven distribution system (DS) sites in Sarawak, Malaysia were studied. Ten liters of water underwent immunomagnetic separation (IMS) technique to detect the presence of Giardia and Cryptosporidium (oo)cysts. The remaining supernatant was used to detect other parasites whilst 50 mL of water sample was each used in the detection of free-living amoebae and fecal coliforms. Sampled water was positive for Giardia (32.9%; 28/85), Cryptosporidium (18.8%; 16/85) followed by Spirometra ova-like (25.9%; 22/85), Blastocystis-like (25.9%; 22/85), nematode larvae-like (8.2%; 7/85) and Taenia ova-like (1.2%; 1/85). Meanwhile, 90.2% (55/61) samples were positive for Acanthamoeba and Naegleria via cultivation and of these, 11 isolates were confirmed as Acanthamoeba genotype T3 (5/7) and T4 (2/7) followed by Naegleria sp. (4/11), Naegleria italica (2/11), Naegleria australiensis (1/11), Naegleria angularis (1/11) and Vahlkampfia sp. (3/11). Cryptosporidium, Acanthamoeba and Naegleria were also detected in one of the seven tested DS sites. Only Giardia and Cryptosporidium showed significant correlations with fluoride and fecal coliforms. These results describe the occurrence of waterborne parasites that will assist key stakeholders in mitigating contamination at the specific sites.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-08
    Description: This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-09
    Description: Tracheal disorders can usually reduce the free lumen diameter or wall stiffness, and hence limit airflow. Trachea tissue engineering seems a promising treatment for such disorders. The required mechanical compatibility of the prepared scaffold with native trachea necessitates investigation of the mechanical behavior of the human trachea. This study aimed at mechanical characterization of human tracheas and comparing the results based on age and gender. After isolating 30 human tracheas, samples of tracheal cartilage, smooth muscle, and connective tissue were subjected to uniaxial tension to obtain force-displacement curves and calculate stress-stretch data. Among several models, the Yeoh and Mooney-Rivlin hyperelastic functions were best able to describe hyperelastic behavior of all three tracheal components. The mean value of the elastic modulus of human tracheal cartilage was calculated to be 16.92 ± 8.76 MPa. An overall tracheal stiffening with age was observed, with the most considerable difference in the case of cartilage. Consistently, we noticed some histological alterations in cartilage and connective tissue with aging, which may play a role in age-related tracheal stiffening. No considerable effect of gender on the mechanical behavior of tracheal components was observed. The results of this study can be applied in the design and fabrication of trachea tissue engineering scaffolds.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-17
    Description: We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-25
    Description: Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM−1), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-02
    Description: Water transport through aquaporin water channels occurs extensively in cell membranes. Hourglass-shaped (biconical) pores resemble the geometry of these aquaporin channels and therefore attract much research attention. We assumed that hourglass-shaped nanopores are capable of high water permeation like biological aquaporins. In order to prove the assumption, we investigated nanoscale water transport through a model hourglass-shaped pore using molecular dynamics simulations while varying the angle of the conical entrance and the total nanopore length. The results show that a minimal departure from optimized cone angle (e.g., 9° for 30 Å case) significantly increases the osmotic permeability and that there is a non-linear relationship between permeability and the cone angle. The analysis of hydrodynamic resistance proves that the conical entrance helps to reduce the hydrodynamic entrance hindrance. Our numerical and analytical results thus confirm our initial assumption and suggest that fast water transport can be achieved by adjusting the cone angle and length of an hourglass-shaped nanopore.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-08-28
    Description: Sustainability, Vol. 10, Pages 3031: An Empirical Investigation of the Relationship between Overall Equipment Efficiency (OEE) and Manufacturing Sustainability in Industry 4.0 with Time Study Approach Sustainability doi: 10.3390/su10093031 Authors: Poorya Ghafoorpoor Yazdi Aydin Azizi Majid Hashemipour Nowadays, small and medium sized enterprises (SMEs) are becoming increasingly competitive. In order to fulfill the rapidly changing market and diversified demands of customers, the SMEs need to achieve and maintain high productivity and quality, with fast response, sufficient flexibility, and short lead times. Therefore, Industry 4.0 offers various manufacturing paradigms that might be a solution in order to increase the productivity of SMEs such as intelligent and flexible manufacturing. Furthermore, in the last decade, the emphasis on adopting eco-friendly practices, implementing sustainability measures, and protecting the environment has continued to grow, to gain traction across SMEs. In fact, because of this need, many SMEs are now adopting sustainable manufacturing practices in response to this increased focus on sustainability and environmental stewardship. The main purpose of this paper is to design and study the implementation of a sustainable, intelligent material handling system for material distribution with utilizing an agent-based algorithm as control architecture. A time study-based methodology has been implemented to evaluate the overall equipment effectiveness (OEE) to identify the matters that need to be resolved and optimized to increase the OEE percentage with consideration of the sustainability of the system. An exhaustive analytical trend applied to the generated time study data. Accordingly, further hardware, software, and layout design limitation and problems detected, and the proper solutions were anticipated. The observed time study results were presented, a fundamental set of analytical observation and information with associated histograms was reviewed. In addition, the study aims to recognize and analyze effective factors on the sustainability of improved processes, using a simple model. To do this, using experts’ viewpoints, affective factors on the sustainability of process improvement activities are determined.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-09-12
    Description: Sensors, Vol. 18, Pages 3038: Avoiding Void Holes and Collisions with Reliable and Interference-Aware Routing in Underwater WSNs Sensors doi: 10.3390/s18093038 Authors: Nadeem Javaid Abdul Majid Arshad Sher Wazir Zada Khan Mohammed Y. Aalsalem Sparse node deployment and dynamic network topology in underwater wireless sensor networks (UWSNs) result in void hole problem. In this paper, we present two interference-aware routing protocols for UWSNs (Intar: interference-aware routing; and Re-Intar: reliable and interference-aware routing). In proposed protocols, we use sender based approach to avoid the void hole. The beauty of the proposed schemes is that they not only avoid void hole but also reduce the probability of collision. The proposed Re-Intar also uses one-hop backward transmission at the source node to further improve the packet delivery ratio of the network. Simulation results verify the effectiveness of the proposed schemes in terms of end-to-end delay, packet delivery ratio and energy consumption.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-24
    Description: Energies, Vol. 11, Pages 2536: Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls Energies doi: 10.3390/en11102536 Authors: Payam Nejat Fatemeh Jomehzadeh Hasanen Mohammed Hussen John Kaiser Calautit Muhd Zaimi Abd Majid Generally, two-third of a building’s energy is consumed by heating, ventilation and air-conditioning systems. One green alternative for conventional air conditioner systems is the implementation of passive cooling. Wing walls and windcatchers are two prominent passive cooling techniques which use wind as a renewable resource for cooling. However, in low wind speed regions and climates, the utilization of natural ventilation systems is accompanied by serious uncertainties. The performance of ventilation systems can be potentially enhanced by integrating windcatchers with wing walls. Since previous studies have not considered this integration, in the first part of this research the effect of this integration on the ventilation performance was assessed and the optimum angle was revealed. However, there is still gap of this combination; thus, in the second part, the impact of wing wall length on the indoor air quality factors was evaluated. This research implemented a Computational Fluid Dynamics (CFD) method to address the gap. The CFD simulation was successfully validated with experimental data from wind tunnel tests related to the previous part. Ten different lengths from 10 cm to 100 cm were analyzed and it was found that the increase in wing wall length leads to a gradual reduction in ventilation performance. Hence, the length does not have a considerable influence on the indoor air quality factors. However, the best performance was seen in 10 cm, that could provide 0.8 m/s for supply air velocity, 790 L/s for air flow rate, 39.5 1/h for air change rate, 107 s for mean age of air and 92% for air change effectiveness.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...