ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (18)
  • 2015-2019  (16)
  • 1970-1974  (2)
  • 1960-1964
  • 1945-1949
  • 1920-1924
  • 1
    Publication Date: 2019-07-13
    Description: Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.
    Keywords: Astrophysics; Instrumentation and Photography
    Type: JSC-CN-35127 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Comets are time capsules from the birth of our Solar System that record pre-solar history, the initial stages of planet formation, and the sources of prebiotic organics and volatiles for the origin of life. These capsules can only be opened in laboratories on Earth. CAESAR (Comet Astrobiology Exploration Sample Return)s sample analysis objectives are to understand the nature of Solar System starting materials and how these components came together to form planets and give rise to life. Examination of these comet nucleus surface samples in laboratories around the world will also provide ground truth to remote observations of the innumerable icy bodies of the Solar System.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN64974 , Lunar and Planetary Science Conference (LPSC 2019); 18ý22 Mar. 2019; The Woodlands, Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Keywords: CHEMISTRY
    Type: Geochimica et Cosmochimica Acta; 38; May 1974
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Of the six chilldown tests, data from only one could be used for evaluation. During the rest of the chilldown tests, there was leakage hydrogen flow into the pump cavity prior to the initiation of the chilldown test. In all of the tests the hydrogen condition into the pump was probably 100% vapor. The data from this one test, therefore, can be used to compare only the single phase fluid correlation in the analytical pump chilldown model. In general, the actual pump chilled down much faster than predicted by the analytical pump model. There were insufficient data from the test to measure the pump flow rate and pump inlet fluid condition; therefore, these parameters were extrapolated based on related data which were available. However, even with the highest probable flow rate, the pump chilled faster than predicted.
    Keywords: FACILITIES, RESEARCH, AND SUPPORT
    Type: NASA-CR-132212 , N8110R:72-033
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative compactness of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/ dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, "New Arctic", sea ice regime.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN52822 , Cryosphere (ISSN 1994-0416) (e-ISSN 1994-0424); 12; 2; 433-452
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN55973 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-27
    Description: The enstatite (E) chondrites are enigmatic but important for understanding the evolution of the terrestrial planets. They have highly reduced mineral assemblages in which enstatite (near pure in compostion) is the dominant silicate, metal is abundant and contains 〉2.5 wt. % Si in some EH3s, elements which are generally lithophile in most chondrites occur as sulfide and some E3s contain nitrides and carbides. Notably, stable isotope compositions are similar to the Earth-Moon. Aside from E chondrite clasts in the Kaidun breccia, the enstaite chondrites are dry, lacking evidence of ever having hydrous minerals, distinguishing them from most other chondrite groups and suggesting they formed relatively close to the sun, inside of the snow line. Compared to other chondrite groups, the E3s are also matrix-poor, with EH3s having ~4-12 vol. % and EL3s 5 vol % matrix. Here we present a study of NWA 8785, a remarkable new EL3 chondrite with an FeO-rich, fine-grained matrix. Our goals are to understand E chondrite matrix and the evolution and alteration history of the EL3 parent body.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: JSC-E-DAA-TN68420 , Meteoritical Society Annual Meeting; Jul 07, 2019 - Jul 12, 2019; Sapporo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-23
    Description: The LiteBIRD mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang. CMB measurements from space give access to the largest angular scales and the full frequency range to constrain Galactic foregrounds, and LiteBIRD has been designed to take best advantage of the unique window of space. LiteBIRD will have a powerful ability to separate Galactic foreground emission from the CMB due to its 15 frequency bands spaced between 40 and 402 GHz and sensitive 100-mK bolometers. LiteBIRD will provide stringent control of systematic errors due to the benign thermal environment at the second Lagrange point, L2, 20-K rapidly rotating half-wave plates on each telescope, and the ability to crosscheck its results by measuring both the reionization and recombination peaks in the B-mode power spectrum. LiteBIRD would be the next step in the series of CMB space missions, COBE, WMAP, and Planck, each of which has given landmark scientific discoveries.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74209 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 286
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The relationship between electron energy flux and the characteristic energy of electron distributions in the main auroral loss cone bridges the gap between predictions made by theory and measurements just recently available from Juno. For decades such relationships have been inferred from remote sensing observations of the Jovian aurora, primarily from the Hubble Space Telescope, and also more recently from Hisaki. However, to infer these quantities, remote sensing techniques had to assume properties of the Jovian atmospheric structure - leading to uncertainties in their profile. Juno's arrival and subsequent auroral passes have allowed us to obtain these relationships unambiguously for the first time, when the spacecraft passes through the auroral acceleration region. Using Juno /Jupiter Energetic particle Detector Instrument (JEDI), an energetic particle instrument, we present these relationships for the 30-kiloelectronvolts to 1-megaelectronvolts electron population. Observations presented here show that the electron energy flux in the loss cone is a nonlinear function of the characteristic or mean electron energy and supports both the predictions from Knight (1973, https://doi.org/10.1016/0032-0633(73)90093-7) and magnetohydrodynamic turbulence acceleration theories (e.g., Saur et al., 2003, https://doi.org/10.1029/2002GL015761). Finally, we compare the in situ analyses of Juno with remote Hisaki observations and use them to help constrain Jupiter's atmospheric profile. We find a possible solution that provides the best agreement between these data sets is an atmospheric profile that more efficiently transports the hydrocarbons to higher altitudes. If this is correct, it supports the previously published idea (e.g., Parkinson et al., 2006, https://doi.org/10.1029/2005JE002539) that precipitating electrons increase the hydrocarbon eddy diffusion coefficients in the auroral regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN63152 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 123; 9; 7554-7567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-12
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...