ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology  (1)
  • Benthic nepheloid layer  (1)
  • Elsevier  (2)
  • American Chemical Society
  • American Physical Society
  • 2015-2019  (2)
  • 1980-1984
  • 1940-1944
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2021-01-14
    Description: The Marsili Seamount (MS) is an about 3200 m high volcanic complex measuring 70 × 30 km with the top at ~500 m b.s.l. MS is interpreted as the ridge of the 2 Ma old Marsili back-arc basin belonging to the Calabrian Arc–Ionian Sea subduction system(Southern Tyrrhenian Sea, Italy). Previous studies indicate that theMS activity developed between 1 and 0.1 Ma through effusions of lava flows. Here, new stratigraphic, textural, geochemical, and 14C geochronological data from a 95 cm long gravity core (COR02) recovered at 839 m bsl in theMS central sector are presented. COR02 contains mud and two tephras consisting of 98 to 100 area% of volcanic ash. The thickness of the upper tephra (TEPH01) is 15 cm, and that of the lower tephra (TEPH02) is 60 cm. The tephras have poor to moderate sorting, loose to partly welded levels, and erosive contacts, which imply a short distance source of the pyroclastics. 14C dating on fossils above and below TEPH01 gives an age of 3 ka BP. Calculations of the sedimentation rates from the mud sediments above and between the tephras suggest that a formation of TEPH02 at 5 ka BP MS ashes has a high-K calcalkaline affinity with 53 wt.% b SiO2 b 68 wt.%, and their composition overlaps that of the MS lava flows. The trace element pattern is consistent with fractional crystallization from a common, OIB-like basalt. The source area of ashes is the central sector of MS and not a subaerial volcano of the Campanian and/or Aeolian Quaternary volcanic districts. Submarine, explosive eruptions occurred atMS in historical times: this is the first evidence of explosive volcanic activity at a significant (500–800 m bsl) water depth in the Mediterranean Sea.MS is still active, the monitoring and an evaluation of the different types of hazards are highly recommended.
    Description: Published
    Description: 764-774
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: Submarine active volcanism ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 385 (2017): 304–327, doi:10.1016/j.margeo.2016.12.012.
    Description: Benthic storms are episodic periods of strong abyssal currents and intense, benthic nepheloid (turbid) layer development. In order to interpret the driving forces that create and sustain these storms, we synthesize measurements of deep ocean currents, nephelometer-based particulate matter (PM) concentrations, and seafloor time-series photographs collected during several science programs that spanned two decades in the western North Atlantic. Benthic storms occurred in areas with high sea-surface eddy kinetic energy, and they most frequently occurred beneath the meandering Gulf Stream or its associated rings, which generate deep cyclones, anticyclones, and/or topographic waves; these create currents with sufficient bed-shear stress to erode and resuspend sediment, thus initiating or enhancing benthic storms. Occasionally, strong currents do not correspond with large increases in PM concentrations, suggesting that easily erodible sediment was previously swept away. Periods of moderate to low currents associated with high PM concentrations are also observed; these are interpreted as advection of PM delivered as storm tails from distal storm events. Outside of areas with high surface and deep eddy kinetic energy, benthic nepheloid layers are weak to non-existent, indicating that benthic storms are necessary to create and maintain strong nepheloid layers. Origins and intensities of benthic storms are best identified using a combination of time-series measurements of bottom currents, PM concentration, and bottom photographs, and these should be coupled with water-column and surface-circulation data to better interpret the specific relations between shallow and deep circulation patterns. Understanding the generation of benthic nepheloid layers is necessary in order to properly interpret PM distribution and its influence on global biogeochemistry.
    Description: Funding for construction of the Bottom Ocean Monitor was provided by Lamont-Doherty Geological Observatory (now Lamont-Doherty Earth Observatory). BOM and mooring deployments and data analysis were funded by the Office of Naval Research (contracts N00014-75-C-0210 and N00014-80-C-0098 to Biscaye and Gardner at Lamont-Doherty; Contracts N00014-79-C-0071 and N00014-82-C-0019 at Woods Hole Oceanographic Institution and ONR Contracts N00014-75-C-0210 and N00014-80-C-0098 at Lamont-Doherty Geological Observatory to Tucholke), Sandia National Laboratories (contract SL-16-5279 to Gardner), the National Science Foundation (contract OCE 1536565 to Gardner and Richardson), Earl F. Cook Professorship (Gardner), and the Department of Energy (contract DE-FG02-87ER-60555 to Biscaye).
    Keywords: Benthic storms ; Benthic nepheloid layer ; Abyssal currents ; Seafloor erosion ; Eddy kinetic energy ; Cyclogenesis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...