ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Coral  (2)
  • 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology  (1)
  • Elsevier  (3)
  • American Chemical Society
  • 2015-2019  (3)
  • 1980-1984
  • 1945-1949
  • 1940-1944
Collection
Publisher
Years
  • 2015-2019  (3)
  • 1980-1984
  • 1945-1949
  • 1940-1944
  • 2005-2009  (3)
Year
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 380 (2016): 284–289, doi:10.1016/j.margeo.2016.04.008.
    Description: Rivers have long been recognized for their ability to shape reef-bound volcanic islands. On the time-scale of glacial–interglacial sea-level cycles, fluvial incision of exposed barrier reef lagoons may compete with constructional coral growth to shape the coastal geomorphology of ocean islands. However, overprinting of Pleistocene landscapes by Holocene erosion or sedimentation has largely obscured the role lowstand river incision may have played in developing the deep lagoons typical of modern barrier reefs. Here we use high-resolution seismic imagery and core stratigraphy to examine how erosion and/or deposition by upland drainage networks has shaped coastal morphology on Tahaa, a barrier reef-bound island located along the Society Islands hotspot chain in French Polynesia. At Tahaa, we find that many channels, incised into the lagoon floor during Pleistocene sea-level lowstands, are located near the mouths of upstream terrestrial drainages. Steeper antecedent topography appears to have enhanced lowstand fluvial erosion along Tahaa's southwestern coast and maintained a deep pass. During highstands, upland drainages appear to contribute little sediment to refilling accommodation space in the lagoon. Rather, the flushing of fine carbonate sediment out of incised fluvial channels by storms and currents appears to have limited lagoonal infilling and further reinforced development of deep barrier reef lagoons during periods of highstand submersion.
    Description: This project was supported by a Jackson School Distinguished Postdoctoral Fellowship to Michael Toomey and the WHOI Coastal Ocean Institute and Ocean and Climate Change Institute.
    Keywords: Coral ; Island ; Lagoon ; Dissolution ; Morphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-14
    Description: The Marsili Seamount (MS) is an about 3200 m high volcanic complex measuring 70 × 30 km with the top at ~500 m b.s.l. MS is interpreted as the ridge of the 2 Ma old Marsili back-arc basin belonging to the Calabrian Arc–Ionian Sea subduction system(Southern Tyrrhenian Sea, Italy). Previous studies indicate that theMS activity developed between 1 and 0.1 Ma through effusions of lava flows. Here, new stratigraphic, textural, geochemical, and 14C geochronological data from a 95 cm long gravity core (COR02) recovered at 839 m bsl in theMS central sector are presented. COR02 contains mud and two tephras consisting of 98 to 100 area% of volcanic ash. The thickness of the upper tephra (TEPH01) is 15 cm, and that of the lower tephra (TEPH02) is 60 cm. The tephras have poor to moderate sorting, loose to partly welded levels, and erosive contacts, which imply a short distance source of the pyroclastics. 14C dating on fossils above and below TEPH01 gives an age of 3 ka BP. Calculations of the sedimentation rates from the mud sediments above and between the tephras suggest that a formation of TEPH02 at 5 ka BP MS ashes has a high-K calcalkaline affinity with 53 wt.% b SiO2 b 68 wt.%, and their composition overlaps that of the MS lava flows. The trace element pattern is consistent with fractional crystallization from a common, OIB-like basalt. The source area of ashes is the central sector of MS and not a subaerial volcano of the Campanian and/or Aeolian Quaternary volcanic districts. Submarine, explosive eruptions occurred atMS in historical times: this is the first evidence of explosive volcanic activity at a significant (500–800 m bsl) water depth in the Mediterranean Sea.MS is still active, the monitoring and an evaluation of the different types of hazards are highly recommended.
    Description: Published
    Description: 764-774
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: Submarine active volcanism ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 451 (2016): 73-83, doi:10.1016/j.palaeo.2016.03.018.
    Description: Sea-level records from atolls, potentially spanning the Cenozoic, have been largely overlooked, in part because the processes that control atoll form (reef accretion, carbonate dissolution, sediment transport, vertical motion) are complex and, for many islands, unconstrained on million-year timescales. Here we combine existing observations of atoll morphology and corelog stratigraphy from Enewetak Atoll with a numerical model to (1) constrain the relative rates of subsidence, dissolution and sedimentation that have shaped modern Pacific atolls and (2) construct a record of sea level over the past 8.5 million years. Both the stratigraphy from Enewetak Atoll (constrained by a subsidence rate of ~ 20 m/Myr) and our numerical modeling results suggest that low sea levels (50–125 m below present), and presumably bi-polar glaciations, occurred throughout much of the late Miocene, preceding the warmer climate of the Pliocene, when sea level was higher than present. Carbonate dissolution through the subsequent sea-level fall that accompanied the onset of large glacial cycles in the late Pliocene, along with rapid highstand constructional reef growth, likely drove development of the rimmed atoll morphology we see today.
    Description: Support for this work was provided through a Jackson School Distinguished Postdoctoral Fellowship to Michael Toomey.
    Keywords: Reef ; Coral ; Dissolution ; Late Miocene ; Oxygen isotope stack
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...