ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-03
    Description: The region of West Bohemia/Vogtland in the Czech–German border area is well known for the repeated occurrence of earthquake swarms, CO 2 emanations and mofette fields. We present a local earthquake tomography study undertaken to image the Vp and Vp/Vs structure in the broader area of earthquake swarm activity. In comparison with previous investigations, more details of the near-surface geology, potential fluid pathways and features around and below the swarm focal zone could be revealed. In the uppermost crust, for the first time the Cheb basin and the Bublák/Hartoušov mofette fields were imaged as distinct anomalies of Vp and Vp/Vs. The well-pronounced low-Vp anomaly of the Cheb basin is not continuing into the Eger rift indicating a particular role of the basin within the rift system. A steep channel of increased Vp/Vs is interpreted as the pathway for fluids ascending from the earthquake swarm focal zone up to the Bublák/Hartoušov mofette fields. As a new feature, a mid-crustal body of high Vp and increased Vp/Vs is revealed just below and north of the earthquake swarm focal zone. It may represent a solidified intrusive body which emplaced prior or during the formation of the rift system. We speculate that enhanced fluid flow into the focal zone and triggering of earthquakes could be driven by the presence of the intrusive body if cooling is not fully completed. We consider the assumed intrusive structure as a heterogeneity leading to higher stress particularly at the junction of the rift system with the basin and prominent fault structures. This may additionally contribute to the triggering of earthquakes.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Presently ongoing geodynamic processes within the intracontinental lithospheric mantle give rise to different natural phenomena in the NW Bohemia/Vogtland region (Czech Republic, Germany), amongst others: earthquake swarms, mineral springs and degassing zones of mantle-derived fluids as well as highly concentrated CO〈sub〉2〈/sub〉 (mofettes). Their interaction mechanisms and relations are not yet fully understood, but fluid pathways within the crust are assumed, that allow efficient fluid transport between the main hypocentral swarm quake region and the degassing areas at the surface. Here, we focus on the location of the presumed fluid channels as well as on the investigation of their near-surface spatio-temporal variability, targeting a depth of a few hundreds of meters. We applied a 3D matched field processing (MFP) approach in the frequency band of 10-20 Hz considering the fluid flow as seismic noise source. Within three campaigns in 2015/16, we recorded continuous seismic noise data on the Hartoušov Mofette Field within the Cheb Basin (NW Bohemia, CZ), which is a key site to study fluid flow as it is characterized by strong and continuous surface degassing of CO〈sub〉2〈/sub〉. We used temporary arrays varying in extent (70-600 m aperture) and in the amount of stations (25-95 units). Assuming a homogeneous velocity model and applying conventional MFP phase-matching over a 3D grid search, we located two channel-like structures beneath the test site, which could be traced down to a common source area up to 2000 m depth. We thereby evaluated the influence of amplitude normalization of the measured noise signal on the MFP location considering water-filled or dry mofette channels. Additionally, a spatio-temporal analysis using time windows with a length of 10 min during 5 hrs of noise record shows variability of fluid flow activity in space and time and hence, its migration beneath the test site on a short time scale.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-17
    Description: To investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing in Northern Chile, we analyse 8 yr of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC). By autocorrelating the ambient seismic noise field measured on the vertical components, approximations of the Green's functions are retrieved and velocity changes are measured with Coda Wave Interferometry. At station PATCX, we observe seasonal changes in seismic velocity caused by thermal stress as well as transient velocity reductions in the frequency range of 4–6 Hz. Sudden velocity drops occur at the time of mostly earthquake-induced ground shaking and recover over a variable period of time. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over the discretization interval of the velocity measurements, which is one day. In our model, the amplitude of the velocity reduction as well as the recovery time are proportional to the size of the excitation. This model with two free scaling parameters fits the data of the shaking induced velocity variation in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before our measurement period. A clear relationship between ground shaking and induced velocity reductions is not visible at other stations. We attribute the outstanding sensitivity of PATCX to ground shaking and thermal stress to the special geological setting of the station, where the subsurface material consists of relatively loose conglomerate with high pore volume leading to a stronger nonlinearity compared to the other IPOC stations.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-27
    Description: Monte Carlo solutions to the radiative transfer equations are used to model translational and rotational motion seismogram envelopes in random elastic media with deterministic background structure assuming multiple anisotropic scattering. Observation and modelling of the three additional components of rotational motions can provide independent information about wave propagation in the Earth's structure. Rotational motions around the vertical axis observed in the P -wave coda are of particular interest as they can only be excited by horizontally polarized shear waves and therefore indicate the conversion from P to SH energy by multiple scattering at 3-D heterogeneities. To investigate crustal scattering and attenuation parameters in south-east Germany beneath the Gräfenberg array multicomponent seismogram envelopes of rotational and translational motions are synthesized and compared to seismic data from regional swarm-earthquakes and of deep teleseismic events. In the regional case a nonlinear genetic inversion is used to estimate scattering and attenuation parameters at high frequencies (4–8 Hz). Our preferred model of crustal heterogeneity consists of a medium with random velocity and density fluctuations described by an exponential autocorrelation function with a correlation length of a few hundred metres and fluctuations in the range of 3 per cent. The quality factor for elastic S -waves attenuation $Q_i^S$ is around 700. In a second, step simulations of teleseismic P -wave arrivals using this estimated set of scattering and attenuation parameters are compared to observed seismogram envelopes from deep events. Simulations of teleseismic events with the parameters found from the regional inversion show good agreement with the measured seismogram envelopes. This includes ringlaser observations of vertical rotations in the teleseismic P -wave coda that naturally result from the proposed model of wave scattering. The model also predicts, that the elastic energy recorded in the teleseismic P coda is not equipartitioned, unlike the coda of regional events, but contains an excess of shear energy. The results confirm that scattering generating the teleseismic P -wave coda mainly occurs in the crustal part of the lithosphere beneath the receiver. Our observations do not require scattering of high frequency waves in the mantle, but weak scattering in the lithospheric mantle cannot be ruled out.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Presently ongoing geodynamic processes within the intracontinental lithospheric mantle give rise to different natural phenomena in the NW Bohemia/Vogtland region (Czech Republic, Germany), amongst others: earthquake swarms, mineral springs and degassing zones of mantle-derived fluids as well as highly concentrated CO〈sub〉2〈/sub〉 (mofettes). Their interaction mechanisms and relations are not yet fully understood, but fluid pathways within the crust are assumed, that allow efficient fluid transport between the main hypocentral swarm quake region and the degassing areas at the surface. Here, we focus on the location of the presumed fluid channels as well as on the investigation of their near-surface spatio-temporal variability, targeting a depth of a few hundreds of metmetres. We applied a 3-D matched field processing (MFP) approach in the frequency band of 10–20 Hz considering the fluid flow as seismic noise source. Within three campaigns in 2015/2016, we recorded continuous seismic noise data on the Hartoušov Mofette Field within the Cheb Basin (NW Bohemia, CZ), which is a key site to study fluid flow as it is characterized by strong and continuous surface degassing of CO〈sub〉2〈/sub〉. We used temporary arrays varying in extent (70-600 m aperture) and in the amount of stations (25–95 units). Assuming a homogeneous velocity model and applying conventional MFP phase-matching over a 3-D grid search, we located two channel-like structures beneath the test site, which could be traced down to a common source area down to 2000 m depth. We thereby evaluated the influence of amplitude normalization of the measured noise signal on the MFP location considering water-filled or dry mofette channels. Additionally, a spatio-temporal analysis using time windows with a length of 10 min during 5 hr of noise record shows variability of fluid flow activity in space and time and hence, its migration beneath the test site on a short timescale.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-13
    Description: We infer seismic azimuthal anisotropy from ambient-noise-derived Rayleigh waves in the wider Vienna Basin region. Cross-correlations of the ambient seismic field are computed for 1953 station pairs and periods from 5 to 25? s to measure the directional dependence of interstation Rayleigh-wave group velocities. We perform the analysis for each period on the whole data set, as well as in overlapping 2°-cells to regionalize the measurements, to study expected effects from isotropic structure, and isotropic–anisotropic trade-offs. To extract azimuthal anisotropy that relates to the anisotropic structure of the Earth, we analyse the group velocity residuals after isotropic inversion. The periods discussed in this study (5–20? s) are sensitive to crustal structure, and they allow us to gain insight into two distinct mechanisms that result in fast orientations. At shallow crustal depths, fast orientations in the Eastern Alps are S/N to SSW/NNE, roughly normal to the Alps. This effect is most likely due to the formation of cracks aligned with the present-day stress-field. At greater depths, fast orientations rotate towards NE, almost parallel to the major fault systems that accommodated the lateral extrusion of blocks in the Miocene. This is coherent with the alignment of crystal grains during crustal deformation occurring along the fault systems and the lateral extrusion of the central part of the Eastern Alps.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-29
    Description: SUMMARY Presently ongoing geodynamic processes within the intracontinental lithospheric mantle give rise to different natural phenomena in the NW Bohemia/Vogtland region (Czech Republic, Germany), amongst others: earthquake swarms, mineral springs and degassing zones of mantle-derived fluids as well as highly concentrated CO2 (mofettes). Their interaction mechanisms and relations are not yet fully understood, but fluid pathways within the crust are assumed, that allow efficient fluid transport between the main hypocentral swarm quake region and the degassing areas at the surface. Here, we focus on the location of the presumed fluid channels as well as on the investigation of their near-surface spatio-temporal variability, targeting a depth of a few hundreds of metmetres. We applied a 3-D matched field processing (MFP) approach in the frequency band of 10–20 Hz considering the fluid flow as seismic noise source. Within three campaigns in 2015/2016, we recorded continuous seismic noise data on the Hartoušov Mofette Field within the Cheb Basin (NW Bohemia, CZ), which is a key site to study fluid flow as it is characterized by strong and continuous surface degassing of CO2. We used temporary arrays varying in extent (70-600 m aperture) and in the amount of stations (25–95 units). Assuming a homogeneous velocity model and applying conventional MFP phase-matching over a 3-D grid search, we located two channel-like structures beneath the test site, which could be traced down to a common source area down to 2000 m depth. We thereby evaluated the influence of amplitude normalization of the measured noise signal on the MFP location considering water-filled or dry mofette channels. Additionally, a spatio-temporal analysis using time windows with a length of 10 min during 5 hr of noise record shows variability of fluid flow activity in space and time and hence, its migration beneath the test site on a short timescale.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1988-06-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...