ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (10)
  • American Association for the Advancement of Science (AAAS)  (5)
  • Blackwell Publishing Ltd
  • MDPI Publishing
  • 2015-2019  (14)
  • 1985-1989  (2)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2016-10-08
    Description: A study of the absorption spectrum of thin CuPb 2 Br 7 films in the 2–6 eV spectral and 90–500 K temperature ranges. It is shown that the exciton spectrum of the compound is associated with transitions in the lead ion. The temperature dependence of the spectral position and half-width of the low-frequency exciton band contains features associated with phase transitions γ → β ( T c 1  = 159 K) and β → α ( T c 2  = 434 K) and the disordering of the cation sublattice of the compound in the transition to the superionic state.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-01
    Description: A study of the absorption spectrum of thin KPb 2 Cl 5 films, in the spectral range of 2–6 eV, within the temperature interval 90–520 K. It is found that low-frequency exciton states are localized in the sublattice of the compound containing the Pb 2+ ions, and that they are excitons of intermediate coupling having a two-dimensional nature.
    Print ISSN: 1063-777X
    Electronic ISSN: 1090-6517
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 6948-6960 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: To gain insight into the mechanism of Na(3p)2P3/2→2P1/2 fine-structure transitions induced by collision with He, we monitor the expectation values of the orbital- and spin-angular momentum vectors, l and s, as a function of time along the trajectory, using a semiclassical formalism. In a typical collision, 〈s〉 remains nearly space-fixed while 〈l〉 precesses about the rotating internuclear axis. Thus, in the interaction region, the projection of 〈l〉 onto the internuclear axis, 〈λ〉, remains nearly constant, and the molecular alignment of the orbital is preserved. We show how equations of motion for the classical analogues of these expectation values agree qualitatively with the quantum equations of motion. A qualitative comparison is also made with the Cs–He system for which the spin–orbit coupling is much stronger. We calculate cross sections for Na(2P3/2)+He→Na(2P1/2)+He as a function of the alignment of the excitation laser polarization with respect to the asymptotic relative velocity vector. For stationary pumping of the excited F=3 hyperfine level, this calculation predicts that the perpendicular alignment gives a cross section which is larger by a factor of 1.8 than that obtained by parallel alignment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 6961-6972 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this paper we present results of coupled channel quantum scattering calculations of the alignment selected j=3/2→ j=1/2 fine structure changing integral cross section for Na(2P)+He. This cross section has in the past been written in terms of a coherent sum of partial wave amplitudes, but we have found that it can be expressed in terms of an incoherent sum of partial cross sections, each labeled by the total angular momentum J and by parity. It is also possible to define an alignment selected wave function for each J such that the azimuthal average of the square of this wave function projected onto each final state is proportional to the magnitude of the partial cross section into that state. This J labeled wave function is thus clearly related to the physical measurables, and we have used it to determine propensities for preservation of asymptotically prepared alignment during collisions. Using a potential surface based on Pascale's ab initio calculations, we find that the alignment ratio σ⊥/σ(parallel) is an increasing function of energy, with a value less than unity at low energy (〈0.01 eV), but increasing quickly to a value of about 2.0 at 0.04 eV and then more slowly at higher energy, up to a value of 2.7 at 0.2 eV (the highest energy considered). Above 0.02 eV, both the alignment ratio and the alignment selected integral cross sections are in good agreement with values calculated in an accompanying semiclassical study (Kovalenko, Leone, and Delos).An examination of the J labeled alignment selected scattering wave functions and of the expectation values of 〈Ω〉, 〈Λ〉, and 〈Σ〉 indicates that at low J when the initial state is prepared with (parallel) polarization, the dominant state at short range is Σ while with ⊥ polarization the dominant state is Π (i.e., asymptotic alignment is preserved). By way of contrast, this propensity for alignment preservation is not seen if fluxes or probability densities associated with alignment selected wave functions labeled by the initial orbital quantum number l (rather than J) are considered. This l labeled result is in accord with recent work by Pouilly and Alexander, but the lack of alignment preservation in this case has no relationship with the alignment cross sections, or with the alignment selected plane wave scattering wave function, since the l labeled wave functions must be coherently combined to generate this information. The orbital scrambling found for the l labeled solutions thus is not related to measurable properties, and instead the correct picture is provided by the J labeled solutions, which do show preservation of alignment. We find that even in the J labeled picture, alignment preservation does not by itself guarantee any specific trend in the alignment ratio for the fine structure transition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-08
    Description: Time Delayed Collection Field and Bias Assisted Charge Extraction (BACE) experiments are used to investigate the charge carrier dynamics in PbS colloidal quantum dot solar cells. We find that the free charge carrier creation is slightly field dependent, thus providing an upper limit to the fill factor. The BACE measurements reveal a rather high effective mobility of 2 × 10 − 3  cm 2 /Vs, meaning that charge extraction is efficient. On the other hand, a rather high steady state non-geminate recombination coefficient of 3 × 10 − 10  cm 3 /s is measured. We, therefore, propose a rapid free charge recombination to constitute the main origin for the limited efficiency of the PbS colloidal quantum dots cells.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉Chemically made colloidal semiconductor quantum dots have long been proposed as scalable and color-tunable single emitters in quantum optics, but they have typically suffered from prohibitively incoherent emission. We now demonstrate that individual colloidal lead halide perovskite quantum dots (PQDs) display highly efficient single-photon emission with optical coherence times as long as 80 picoseconds, an appreciable fraction of their 210-picosecond radiative lifetimes. These measurements suggest that PQDs should be explored as building blocks in sources of indistinguishable single photons and entangled photon pairs. Our results present a starting point for the rational design of lead halide perovskite–based quantum emitters that have fast emission, wide spectral tunability, and scalable production and that benefit from the hybrid integration with nanophotonic components that has been demonstrated for colloidal materials.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-30
    Description: In the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-11
    Description: 1-photon (382 nm) and 2-photon (752 nm) excitations to the S 1 state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S 1 → S n due to resonant absorption of a third pump photon. Subsequent S n → S 1 internal conversion (with τ 1 = 1 ps) prepares a very hot S 1 state which cools down with τ 2 = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ (2) = 32 ⋅ 10 −50 cm 4 s at 752 nm are evaluated from the bleach signal.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉Chemically made colloidal semiconductor quantum dots have long been proposed as scalable and color-tunable single emitters in quantum optics, but they have typically suffered from prohibitively incoherent emission. We now demonstrate that individual colloidal lead halide perovskite quantum dots (PQDs) display highly efficient single photon emission with optical coherence times as long as 80 ps, an appreciable fraction of their 210 ps radiative lifetimes. These measurements suggest that PQDs should be explored as building blocks in sources of indistinguishable single photons and entangled photon pairs. Our results present a starting point for the rational design of lead halide perovskite-based quantum emitters with fast emission, wide spectral-tunability, scalable production, and which benefit from the hybrid-integration with nano-photonic components that has been demonstrated for colloidal materials.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-01
    Description: Colloidal quantum dots, and nanostructured semiconductors in general, carry the promise of overcoming the limitations of classical materials in chemical and physical properties and in processability. However, sufficient control of electronic properties, such as carrier concentration and carrier mobility, has not been achieved until now, limiting their application. In bulk semiconductors, modifications of electronic properties are obtained by alloying or doping, an approach that is not viable for structures in which the surface is dominant. The electronic properties of PbS colloidal quantum dot films are fine-tuned by adjusting their stoichiometry, using the large surface area of the nanoscale building blocks. We achieve an improvement of more than two orders of magnitude in the hole mobility, from below 10 –3 to above 0.1 cm 2 /V⋅s, by substituting the iodide ligands with sulfide while keeping the electron mobility stable (~1 cm 2 /V⋅s). This approach is not possible in bulk semiconductors, and the developed method will likely contribute to the improvement of solar cell efficiencies through better carrier extraction and to the realization of complex (opto)electronic devices.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...