ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-23
    Description: Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with 〉40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing 〉35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that 〉73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sunagawa, Shinichi -- Coelho, Luis Pedro -- Chaffron, Samuel -- Kultima, Jens Roat -- Labadie, Karine -- Salazar, Guillem -- Djahanschiri, Bardya -- Zeller, Georg -- Mende, Daniel R -- Alberti, Adriana -- Cornejo-Castillo, Francisco M -- Costea, Paul I -- Cruaud, Corinne -- d'Ovidio, Francesco -- Engelen, Stefan -- Ferrera, Isabel -- Gasol, Josep M -- Guidi, Lionel -- Hildebrand, Falk -- Kokoszka, Florian -- Lepoivre, Cyrille -- Lima-Mendez, Gipsi -- Poulain, Julie -- Poulos, Bonnie T -- Royo-Llonch, Marta -- Sarmento, Hugo -- Vieira-Silva, Sara -- Dimier, Celine -- Picheral, Marc -- Searson, Sarah -- Kandels-Lewis, Stefanie -- Tara Oceans coordinators -- Bowler, Chris -- de Vargas, Colomban -- Gorsky, Gabriel -- Grimsley, Nigel -- Hingamp, Pascal -- Iudicone, Daniele -- Jaillon, Olivier -- Not, Fabrice -- Ogata, Hiroyuki -- Pesant, Stephane -- Speich, Sabrina -- Stemmann, Lars -- Sullivan, Matthew B -- Weissenbach, Jean -- Wincker, Patrick -- Karsenti, Eric -- Raes, Jeroen -- Acinas, Silvia G -- Bork, Peer -- New York, N.Y. -- Science. 2015 May 22;348(6237):1261359. doi: 10.1126/science.1261359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. sunagawa@embl.de karsenti@embl.de jeroen.raes@vib-kuleuven.be sacinas@icm.csic.es bork@embl.de. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. ; CEA-Institut de Genomique, GENOSCOPE, 2 rue Gaston Cremieux, 91057 Evry, France. ; Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Maritim de la Barceloneta, 37-49, Barcelona E08003, Spain. ; Sorbonne Universites, UPMC, Universite Paris 06, CNRS-IRD-MNHN, LOCEAN Laboratory, 4 Place Jussieu, 75005 Paris France. ; CNRS, UMR 7093, Laboratoire d'Oceanographie de Villefranche-sur-Mer, Observatoire Oceanologique, F-06230 Villefranche-sur-mer, France. Sorbonne Universites, UPMC Universite Paris 06, UMR 7093, LOV, Observatoire Oceanologique, F-06230 Villefranche-sur-mer, France. ; Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France. Laboratoire de Physique des Oceans UBO-IUEM, Place Copernic 29820 Plouzane, France. ; Aix Marseille Universite CNRS IGS UMR 7256, 13288 Marseille, France. ; Department of Ecology and Evolutionary Biology, University of Arizona, 1007 East Lowell Street, Tucson, AZ 85721, USA. ; Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Maritim de la Barceloneta, 37-49, Barcelona E08003, Spain. Department of Hydrobiology, Federal University of Sao Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 Sao Carlos, Sao Paulo, Brazil. ; Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France. CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, UPMC Universite Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France. ; CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universites, UPMC Universite Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. ; CNRS UMR 7232, BIOM, Avenue du Fontaule, 66650 Banyuls-sur-Mer, France. Sorbonne Universites Paris 06, OOB UPMC, Avenue du Fontaule, 66650 Banyuls-sur-Mer, France. ; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. ; CEA-Institut de Genomique, GENOSCOPE, 2 rue Gaston Cremieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Universite d'Evry, UMR 8030, CP5706, Evry, France. ; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-001, Japan. ; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany. MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany. ; Department of Geosciences, Laboratoire de Meteorologie Dynamique (LMD), Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France. Laboratoire de Physique des Oceans UBO-IUEM, Place Copernic, 29820 Plouzane, France. ; Ecole Normale Superieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France. Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. sunagawa@embl.de karsenti@embl.de jeroen.raes@vib-kuleuven.be sacinas@icm.csic.es bork@embl.de. ; Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Center for the Biology of Disease, VIB, Herestraat 49, 3000 Leuven, Belgium. Department of Applied Biological Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. sunagawa@embl.de karsenti@embl.de jeroen.raes@vib-kuleuven.be sacinas@icm.csic.es bork@embl.de. ; Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Maritim de la Barceloneta, 37-49, Barcelona E08003, Spain. sunagawa@embl.de karsenti@embl.de jeroen.raes@vib-kuleuven.be sacinas@icm.csic.es bork@embl.de. ; Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Max-Delbruck-Centre for Molecular Medicine, 13092 Berlin, Germany. sunagawa@embl.de karsenti@embl.de jeroen.raes@vib-kuleuven.be sacinas@icm.csic.es bork@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999513" target="_blank"〉PubMed〈/a〉
    Keywords: Databases, Genetic ; Ecosystem ; Gastrointestinal Tract/microbiology ; Genetic Variation ; Humans ; Metagenome ; Microbiota/*genetics ; Oceans and Seas ; Plankton/*classification/genetics/isolation & purification ; Seawater/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-31
    Description: A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 gigahertz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 microK-arcminutes noise and 15 arcseconds resolution at 150 gigahertz), CMB-HD (Cosmic Microwave Background - Henry Draper catalog entry) will enable major advances. It will allow 1) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k approximately equal to 10 h per megaparsec), which probes dark matter particle properties. It will also allow 2) measurements of the thermal and kinetic Sunyaev-Zeldovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field, which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3) ruling out or detecting any new, light (less than 0.1 electronvolts), thermal particles, which could potentially be the dark matter, and 4) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5) monitor the transient sky by mapping the full observing region every few days, which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6) provide a census of planets, dwarf planets, and asteroids in the outer Solar System, and 7) enable the detection of exo-Oort clouds around other solar systems, shedding light on planet formation. The combination of CMB-HD with contemporary ground and space-based experiments will also provide powerful synergies. CMB-HD will deliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-class off-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopes will field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey will be made publicly available, with usability and accessibility a priority.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-23
    Description: The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form (SO-Nominal) consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating (Stage 3) experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4. Construction of SO-Nominal is fully funded, and operations and data analysis are funded for part of the planned five-year observations. We will seek federal funding to complete the observations and analysis of SO-Nominal, at the $25M level. The SO has a low risk and cost efficient upgrade path the 6 m LAT can accommodate almost twice the baseline number of detectors and the SATs can be duplicated at low cost. We will seek funding at the $75M level for an expansion of the SO (SO-Enhanced) that fills the remaining focal plane in the LAT, adds three SATs, and extends operations by five years, substantially improving our science return. By this time SO may be operating as part of the larger CMB-S4 project. This white paper summarizes and extends material presented in, which describes the science goals of SO-Nominal, and which describe the instrument design.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck CDM model over a range of multipoles L 80-2100, with an amplitude of lensing A(sub lens) = 1.06 +/- 0.15 stat +/- 0.06 sys relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma 8 omega m(sup 0.25) = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma 8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol data set.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44620 , Physical Review D (ISSN 1550-7998) (e-ISSN 1089-4918); 95; 12; 123529
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-23
    Description: A millimeter-wave survey over half the sky, that spans frequencies in the range of 30 to 350 GHz, and that is both an order of magnitude deeper and of higher-resolution than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. By providing such a deep, high-resolution millimeter-wave survey (about 0.5 Karcmin noise and 15 arcsecond resolution at 150 GHz), CMB-HD will enable major advances.It will allow 1.) the use of gravitational lensing of the primordial microwave background to map the distribution of matter on small scales (k 10 hMpc1), which probes dark matter particle properties. It will also allow 2.) measurements of the thermal and kinetic Sunyaev-Zel'dovich effects on small scales to map the gas density and gas pressure profiles of halos over a wide field,which probes galaxy evolution and cluster astrophysics. In addition, CMB-HD would allow us to cross critical thresholds in fundamental physics: 3.) ruling out or detecting any new, light (〈 0:1 eV), thermal particles, which could potentially be the dark matter, and 4.) testing a wide class of multi-field models that could explain an epoch of inflation in the early Universe. Such a survey would also 5.) monitor the transient sky by mapping the full observing region every few days,which opens a new window on gamma-ray bursts, novae, fast radio bursts, and variable active galactic nuclei. Moreover, CMB-HD would 6.) provide a census of planets, dwarf planets, andasteroids in the outer Solar System, and 7.) enable the detection of exo-Oort clouds around othersolar systems, shedding light on planet formation. The combination of CMB-HD with contemporaryground and space-based experiments will also provide powerful synergies. CMB-HD willdeliver this survey in 5 years of observing 20,000 square degrees, using two new 30-meter-classoff-axis cross-Dragone telescopes to be located at Cerro Toco in the Atacama Desert. The telescopeswill field about 2.4 million detectors (600,000 pixels) in total. The CMB-HD survey willbe made publicly available, with usability and accessibility a priority.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...