ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-09-01
    Description: Massive stars play an important role in both cluster and galactic evolution and the rate at which they lose mass is a key driver of both their own evolution and their interaction with the environment up to and including their terminal SNe explosions. Young massive clusters provide an ideal opportunity to study a co-eval population of massive stars, where both their individual properties and the interaction with their environment can be studied in detail. We aim to study the constituent stars of the Galactic cluster Westerlund 1 in order to determine mass-loss rates for the diverse post-main sequence population of massive stars. To accomplish this we made 3mm continuum observations with the Atacama Large Millimetre/submillimetre Array. We detected emission from 50 stars in Westerlund 1, comprising all 21 Wolf-Rayets within the field of view, plus eight cool and 21 OB super-/hypergiants. Emission nebulae were associated with a number of the cool hypergiants while, unexpectedly, a number of hot stars also appear spatially resolved. We were able to measure the mass-loss rates for a unique population of massive post-main sequence stars at every stage of evolution, confirming a significant increase as stars transitioned from OB supergiant to WR states via LBV and/or cool hypergiant phases. Fortuitously, the range of spectral types exhibited by the OB supergiants provides a critical test of radiatively-driven wind theory and in particular the reality of the bi-stability jump. The extreme mass-loss rate inferred for the interacting binary Wd1-9 in comparison to other cluster members confirmed the key role binarity plays in massive stellar evolution. The presence of compact nebulae around a number of OB and WR stars is unexpected; by analogy to the cool super-/hypergiants we attribute this to confinement and sculpting of the stellar wind via interaction with the intra-cluster medium/wind. Given the morphologies of core collapse SNe depend on the nature of the pre-explosion circumstellar environment, if this hypothesis is correct then the properties of the explosion depend not just on the progenitor, but also the environment in which it is located.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-01
    Description: Context. X-ray emission from massive stars was first reported four decades ago, but the precise physics governing its formation as a function of stellar properties and binarity remains not fully understood. With the recent suggestion that such objects may be important sites of cosmic ray production, a better understanding of their high-energy properties is particularly timely. Aims. The young massive cluster Westerlund 1 provides an ideal testbed for understanding this emission, with over 50 cluster members detected in historical X-ray observations. In the decade since these data were obtained, significant new multi-epoch observations of the cluster have been made, allowing a fundamental reappraisal of the nature of both X-ray bright and dark stars. Methods. Optical spectroscopy permits accurate classification of cluster members, while multi-epoch observations of a sub-set allow identification and characterisation of the binary population. Results. A total of 45 X-ray sources within Wd1 now have precise spectral classifications. Of these, 16 have been identified as candidate or confirmed massive binaries. X-ray emission is confined to O9-B0.5 supergiants, Wolf-Rayets and a small group of highly luminous interacting/post-interaction OB+OB binaries. Despite their presence in large numbers, no emission is seen from earlier, less evolved O stars or later, cooler B super-/hypergiants. A total of 22 stars have X-ray properties that are suggestive of a contribution from emission originating in a wind collision zone. Conclusions. We suppose that the lack of X-ray emission from O giants is due to their comparatively low intrinsic bolometric luminosity if, as expected, they follow the canonical LX/Lbol relation for hot stars. The transition away from X-ray emission for OB supergiants occurs at the location of the bistability jump; we speculate that below this limit, stellar wind velocities are insufficient for internal, X-ray emitting shocks to form. Our results are consistent with recent findings that massive binaries are not uniformly brighter than single stars of comparable luminosity or spectral type, although it is noteworthy that the brightest and hardest stellar X-ray sources within Wd1 are all either confirmed or candidate massive, interacting/post-interaction binaries.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-01
    Description: Aims. We estimate physical parameters for the late-type massive stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud (LMC). Methods. The observational sample comprises 20 candidate red supergiants (RSGs) which are the reddest ((B − V) 〉 1 mag) and brightest (V 〈 16 mag) objects in the VFTS. We use optical and near-infrared (near-IR) photometry to estimate their temperatures and luminosities, and introduce the luminosity–age diagram to estimate their ages. Results. We derive physical parameters for our targets, including temperatures from a new calibration of (J − Ks)0 colour for luminous cool stars in the LMC, luminosities from their J-band magnitudes (thence radii), and ages from comparisons with current evolutionary models. We show that interstellar extinction is a significant factor for our targets, highlighting the need to take it into account in the analysis of the physical parameters of RSGs. We find that some of the candidate RSGs could be massive AGB stars. The apparent ages of the RSGs in the Hodge 301 and SL 639 clusters show a significant spread (12–24 Myr). We also apply our approach to the RSG population of the relatively nearby NGC 2100 cluster, finding a similarly large spread. Conclusions. We argue that the effects of mass transfer in binaries may lead to more massive and luminous RSGs (which we call “red stragglers”) than expected from single-star evolution, and that the true cluster ages correspond to the upper limit of the estimated RSG ages. In this way, the RSGs can serve as a new and potentially reliable age tracer in young star clusters. The corresponding analysis yields ages of 24−3+5 Myr for Hodge 301, 22−5+6 Myr for SL 639, and 23−2+4 Myr for NGC 2100.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2019-03-01
    Description: Context. Recent observational studies indicate that a large number of OB stars are found within binary systems which may be expected to interact during their lifetimes. Significant mass transfer or indeed merger of both components is expected to modify evolutionary pathways, facilitating the production of exceptionally massive stars which will present as blue stragglers. Identification and characterisation of such objects is crucial if the efficiency of mass transfer is to be established; a critical parameter in determining the outcomes of binary evolutionary channels. Aims. The young and coeval massive cluster Westerlund 1 hosts a rich population of X-ray bright OB and Wolf–Rayet stars where the emission is attributed to shocks in the wind collision zones of massive binaries. Motivated by this, we instigated a study of the extremely X-ray luminous O supergiants Wd1-27 and -30a. Methods. We subjected a multi-wavelength and -epoch photometric and spectroscopic dataset to quantitative non-LTE model atmosphere and time-series analysis in order to determine fundamental stellar parameters and search for evidence of binarity. A detailed examination of the second Gaia data release was undertaken to establish cluster membership. Results. Both stars were found to be early/mid-O hypergiants with luminosities, temperatures and masses significantly in excess of other early stars within Wd1, hence qualifying as massive blue stragglers. The binary nature of Wd1-27 remains uncertain but the detection of radial velocity changes and the X-ray properties of Wd1-30a suggest that it is a binary with an orbital period ≤10 days. Analysis of Gaia proper motion and parallactic data indicates that both stars are cluster members; we also provide a membership list for Wd1 based on this analysis. Conclusions. The presence of hypergiants of spectral types O to M within Wd1 cannot be understood solely via single-star evolution. We suppose that the early-B and mid-O hypergiants formed via binary-induced mass-stripping of the primary and mass-transfer to the secondary, respectively. This implies that for a subset of objects massive star-formation may be regarded as a two-stage process, with binary-driven mass-transfer or merger yielding stars with masses significantly in excess of their initial “birth” mass.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-01
    Description: The Transiting Exoplanet Survey Satellite TESS has begun a new age of exoplanet discoveries around bright host stars. We present the discovery of HD 1397b (TOI-120.01), a giant planet in an 11.54-day eccentric orbit around a bright (V = 7.9) G-type subgiant. We estimate both host star and planetary parameters consistently using EXOFASTv2 based on TESS time-series photometry of transits and radial velocity measurements with CORALIE and MINERVA-Australis. We also present high angular resolution imaging with NaCo to rule out any nearby eclipsing binaries. We find that HD 1397b is a Jovian planet, with a mass of 0.415 ± 0.020 MJ and a radius of 1.026 ± 0.026 RJ. Characterising giant planets in short-period eccentric orbits, such as HD 1397b, is important for understanding and testing theories for the formation and migration of giant planets as well as planet-star interactions.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-09-01
    Description: We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity (RV); in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo RV variation with a period of 10.483 ± 0.002 d and an amplitude of ~350 km s−1. A secondary RV curve is also marginally detectable. We reanalysed archival NAOS-CONICA photometric survey data in combination with our RV results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We have modelled it as consisting of an 82 ± 12 M⊙ WN8–9h primary and a 60 ± 8 M⊙ O5–6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches’ age and composition. It also appears to be one of the most massive binaries detected to date; the primary’s calculated initial mass of ≳120 M⊙ would arguably make this the most massive binary known in the Galaxy.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-03-01
    Description: The Arches is one of the youngest, densest and most massive clusters in the Galaxy. As such it provides a unique insight into the lifecycle of the most massive stars known and the formation and survival of such stellar aggregates in the extreme conditions of the Galactic Centre. In a previous study we presented an initial stellar census for the Arches and in this work we expand upon this, providing new and revised classifications for ∼30% of the 105 spectroscopically identified cluster members as well as distinguishing potential massive runaways. The results of this survey emphasise the homogeneity and co-evality of the Arches and confirm the absence of H-free Wolf-Rayets of WC sub-type and predicted luminosities. The increased depth of our complete dataset also provides significantly better constraints on the main sequence population; with the identification of O9.5 V stars for the first time we now spectroscopically sample stars with initial masses ranging from ∼16 M⊙ to ≥120 M⊙. Indeed, following from our expanded stellar census we might expect ≳50 stars within the Arches to have been born with masses ≳60 M⊙, while all 105 spectroscopically confirmed cluster members are massive enough to leave relativistic remnants upon their demise. Moreover the well defined observational properties of the main sequence cohort will be critical to the construction of an extinction law appropriate for the Galactic Centre and consequently the quantitative analysis of the Arches population and subsequent determination of the cluster initial mass function.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...