ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • Elsevier  (5)
  • 2015-2019  (3)
  • 1990-1994  (2)
  • 1980-1984
  • 1
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 124 . pp. 103-125.
    Publication Date: 2021-05-18
    Description: Highlights: • Analysis of hydrographic and current observations (1989–2014) in the western equatorial Atlantic. • Lower NADW and lighter AABW form an interactive transition layer in the northern Brazil Basin. • Proof of long-term abyssal warming on isobars in the western tropical Atlantic. • Warming of densest AABW is mainly caused by descent of isopycnal surfaces and volume loss of dense water masses. • Changes on isopycnal surfaces show warming in the 1990s and cooling in the 2000s. Abstract: The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic – along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5 °S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5 ± 0.7∙10−3 °C yr−1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989–2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the trends on isobars range from about 50% in the lighter AABW layers in the EQCH up to a maximum of 80% in the transition layer the lower NADW and lighter AABW form in the northern Brazil Basin.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 40 (9). pp. 1925-1933.
    Publication Date: 2018-03-02
    Description: The Vema Channel represents a prominent location for the nortward flow of bottom water in the subtropical western South Atlantic. A recent multibeam echo-sounding survey of the Vema Sill on board F.S. Meteor revealed a narrow and shallow portion of the Vema Channel at 31°12′S, 39°24′W, the Vema Sill. The survey also showed the remarkably asymmetric shape of the sill region, suggesting an interaction between the bottom flow and the shape of the channel.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 113 (1-2). pp. 287-292.
    Publication Date: 2018-03-02
    Description: Dense Antarctic Bottom Water formed around the continent of Antarctica spreads northward in the Atlantic underneath North Atlantic Deep Water, gradually mixing and upwelling into it. This Antarctic Water forms a significant element of the meridional circulation in both directions: northward as bottom water and southward as deep water. It is important to determine the strength of each component to assess its role in ocean circulation. Such measurements are useful when made in constricted pathways because any flow is more clearly defined. A new set of fine-resolution hydrograhic measurements in the Hunter Channel of the South Atlantic Ocean has been obtained, which allow the geostrophic bottom flow there to be estimated for the first time. The northward flow through the Hunter Channel of water cooler than 2-degrees-C is thus estimated to be 0.7 X 10(6) m3 s-1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Encyclopedia of Ocean Sciences. , ed. by Cochran, J. K., Bokuniewicz, J. H. and Yager, L. P. Elsevier, Oxford, UK, pp. 189-203.
    Publication Date: 2020-12-16
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...