ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-27
    Description: The shapes of raindrops play an important role in inducing polarimetric rainfall algorithms with differential reflectivity (ZDR) and specific differential phase (KDP). The shapes of raindrops have a direct impact on rainfall estimation. However, the characteristics of raindrop size distribution (DSD) are different depending on precipitation type, storm stage of development, and regional and climatological conditions. Therefore, it is necessary to provide assumptions based on raindrop shapes that reflect the rainfall characteristics of the Korean peninsula. In this study, we presented a method to find optimal polarimetric rainfall algorithms on the Korean peninsula using the 2-Dimensional Video Disdrometer (2DVD) and Bislsan S-Band dual-polarization radar. First, a new axis ratio of raindrop relations was developed for the improvement of rainfall estimation. Second, polarimetric rainfall algorithms were derived using different axis ratio relations, and estimated radar-point one-hour rain rate for the differences in polarimetric rainfall algorithms were compared with the hourly rain rate measured by gauge. In addition, radar rainfall estimation was investigated in relation to calibration bias of reflectivity and differential reflectivity. The derived raindrop axis ratio relation from the 2DVD was more oblate than existing relations in the D 〈 1.5 mm and D 〉 5.5 mm range. The R(KDP, ZDR) algorithm based on a new axis ratio relation showed the best result on DSD statistics; however, the R(Zh, ZDR) algorithm showed the best performance for radar rainfall estimation, because the rainfall events used in the analysis were mainly weak precipitation and KDP is noisy at lower rain rates ( ≤ 5 mm hr−1). Thus, the R(KDP, ZDR) algorithm is suitable for heavy rainfall and R(Zh, ZDR) algorithm is suited for light rainfall. The calibration bias of reflectivity (ZH) and differential reflectivity (ZDR) were calculated from the comparison of measured with simulated ZH and ZDR from the 2DVD. The calculated ZH and ZDR bias was used to reduce radar bias, and to produce more accurate rainfall estimation.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...