ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-07
    Description: This report is part of a series of reports that address flight deck design and evaluation, written as a response to loss of control accidents. In particular, this activity is directed at failures in airplane state awareness in which the pilot loses awareness of the airplane's energy state or attitude and enters an upset condition. In a report by the Commercial Aviation Safety Team, an analysis of accidents and incidents related to loss of airplane state awareness determined that hazard alerting was not effective in producing the appropriate pilot response to a hazard (CAST, 2014). In the current report, we take a detailed look at 28 airplane state awareness accidents and incidents to determine how well the hazard alerting worked. We describe a five-step integrated alerting-to-recovery sequence that prescribes how hazard alerting should lead to effective flight crew actions for managing the hazard. Then, for each hazard in each of the 28 events, we determine if that sequence failed and, if so, how it failed. The results show that there was an alerting failure in every one of the 28 safety events, and that the most frequent failure (20/28) was tied to the flight crew not orienting to (not being aware of) the hazard. The discussion section summarizes findings and identifies alerting issues that are being addressed and issues that are not currently being addressed. We identify a few recent upgrades that have addressed certain alerting failures. Two of these upgrades address alerting design, but one response to the safety events is to upgrade training for approach to stall and stall recovery. We also describe issues that are not being addressed adequately: better alert integration for flight path management types of hazards, airplanes in the fleet that do not meet the current alerting regulations, a lack of innovation for addressing cases of channelized attention, and existing vulnerabilities in managing data validity.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2019-220176 , ARC-E-DAA-TN64314
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.
    Keywords: Aircraft Instrumentation
    Type: NASA/TM-1998-112217 , A-98-09160 , NAS 1.15:112217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: This paper will summarize the results of a study which introduces a structured, model based approach to learning how the automated vertical guidance system works on a modern commercial air transport. The study proposes a framework to provide accurate and complete information in an attempt to eliminate confusion about 'what the system is doing'. This study will examine a structured methodology for organizing the ideas on which the system was designed, communicating this information through the training material, and displaying it in the airplane. Previous research on model-based, computer aided instructional technology has shown reductions in the amount of time to a specified level of competence. The lessons learned from the development of these technologies are well suited for use with the design methodology which was used to develop the vertical guidance logic for a large commercial air transport. The design methodology presents the model from which to derive the training material, and the content of information to be displayed to the operator. The study consists of a 2 X 2 factorial experiment which will compare a new method of training vertical guidance logic and a new type of display. The format of the material used to derive both the training and the display will be provided by the Operational Procedure Methodology. The training condition will compare current training material to the new structured format. The display condition will involve a change of the content of the information displayed into pieces that agree with the concepts with which the system was designed.
    Keywords: Aircraft Communications and Navigation
    Type: 9th International Symposium on Aviation Psychology; Apr 27, 1997 - May 01, 1997; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.
    Keywords: Astronomy
    Type: 9th International Symposium on Aviation Psychology; Apr 27, 1997 - May 01, 1997; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Electric Vertical Takeoff and Landing (eVTOL) vehicle and airspace technologies promise large increases in the number of aircraft in operation. One critical technology for these emerging markets is the increased use of automated systems to reduce pilot skill, training, and proficiency requirements. While the use of these systems promises to reduce or eliminate pilot functions in the long-term, the technology development for the required functions will necessitate a phased transition. The transition to, and adoption of automated systems will generate new safety challenges. This presentation discusses current safety challenges, new challenges for eVTOLs, and some research focused on addressing these challenges.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN57236 , Association for Unmanned Vehicle Systems International Conference (AUVSI 2018): From VTOL to eVTOL: Technical Solutions; May 24, 2018 - May 25, 2018; San Carlos, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: In the glass cockpit, it's not uncommon to hear exclamations such as "why is it doing that?". Sometimes pilots ask "what were they thinking when they set it this way?" or "why doesn't it tell me what it's going to do next?". Pilots may hold a conceptual model of the automation that is the result of fleet lore, which may or may not be consistent with what the engineers had in mind. But what did the engineers have in mind? In this study, we present some of the underlying assumptions surrounding the glass cockpit. Engineers and designers make assumptions about the nature of the flight task; at the other end, instructor and line pilots make assumptions about how the automation works and how it was intended to be used. These underlying assumptions are seldom recognized or acknowledged, This study is an attempt to explicitly arti culate such assumptions to better inform design and training developments. This work is part of a larger project to support training strategies for automation.
    Keywords: Electronics and Electrical Engineering
    Type: 10th International Symposium on Aviation Psychology; May 02, 1999 - May 06, 1999; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The psychomotor vigilance task (PVT) is sensitive measure of performance impairment arising from sleep loss and circadian misalignment. Some individuals are able to maintain stable, good performance during laboratory-imposed sleep restriction. It is unclear whether such individuals need less sleep or whether they are more resilient to the effects of sleep loss. We aimed to characterize the relationship between sleep duration and perceived sleep need with PVT performance under real-world conditions.
    Keywords: Behavioral Sciences
    Type: ARC-E-DAA-TN57488 , Annual Meeting of the Associated Professional Sleep Societies (Sleep 2018); Jun 02, 2018 - Jun 06, 2018; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We consider how a jet transport airplane interface supports the flight crew in managing airplane system failures (or non-normals) for continued safe flight and landing. The existing state of the art starts with a list of airplane system component failures and asks the flight crew to determine, with the help of non-normal procedures, the operational consequences of those failures. As airplane systems become more complex and interconnected, the flight crew's ability to determine operational consequences will become inadequate. We describe an approach that attempts to translate airplane system failures directly into airplane "capabilities," which is a set of basic airplane functions, such as the ability to stop after landing. This paper describes the overall framework for supporting flight crews in operational decision making and the initial efforts to develop a language and display concepts.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN57537 , AIAA Aviation Forum 2018; Jun 23, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This is an exciting time for aviation. New vehicle and airspace technologies promise large increases in the number of aircraft in operation. One critical technology for these emerging markets is the increased use of automated systems to reduce pilot skill, training, and proficiency requirements. While the use of these systems promises to reduce or eliminate pilot functions in the long-term, the technology development for the required functions will necessitate a phased transition. The transition to, and adoption of automated systems will generate new safety challenges. This paper is a first look at a model to help frame flight crew functions for evaluation of future operational requirements. The model is intended to provide required flight crew functions regardless of whether the functions are performed by human or artificial agent. It is hoped that the model will be useful in identifying safety challenges and enabling a safe transition for the new aviation markets. The paper presents some background for a model for framing the flight crew function model and some thoughts about next steps.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN57004 , AIAA Aviation 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Urban Air Mobility (UAM) - defined as safe and efficient air traffic operations in a metropolitan area for manned aircraft and unmanned aircraft systems - is being researched and developed by industry, academia, and government. Significant resources have been invested toward cultivating an ecosystem for Urban Air Mobility that includes manufacturers of electric vertical takeoff and landing aircraft, builders of takeoff and landing areas, and researchers of the airspace integration concepts, technologies, and procedures needed to conduct Urban Air Mobility operations safely and efficiently alongside other airspace users. This paper provides high-level descriptions of both emergent and early expanded operational concepts for Urban Air Mobility that NASA is developing. The scope of this work is defined in terms of missions, aircraft, airspace, and hazards. Past and current Urban Air Mobility operations are also reviewed, and the considerations for the data exchange architecture and communication, navigation, and surveillance requirements are also discussed. This paper will serve as a starting point to develop a framework for NASA's Urban Air Mobility airspace integration research and development efforts with partners and stakeholders that could include fast-time simulations, human-in-the-loop (HITL) simulations, and flight demonstrations.
    Keywords: Aircraft Communications and Navigation
    Type: ARC-E-DAA-TN57126 , AIAA Aviation Forum (Aviation 2018); Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...