ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: The objective of this numerical/experimental study is to improve the understanding of the effects of gravity on the two-way interaction between dispersed particles (bubbles or liquid droplets) and the carrier turbulent flow. The first phase of the project considers isotropic turbulence. Turbulent homogeneous shear flows laden with droplets/bubbles will be studied in the next phase. The experiments reported here are concerned with the dispersion of liquid droplets by homogeneous turbulence under various gravitational conditions and the effect of these droplets on the evolution of the turbulence of the carrier fluid (air). Direct numerical simulations (DNS) of bubble - laden isotropic decaying turbulence are performed using the two-fluid approach (TF) instead of the Eulerian-Lagrangian approach (EL). The motivation for using the TF formulation is that EL requires considerable computational resources especially for the case of two-way coupling where the instantaneous trajectories of a large number of individual bubbles need to be computed. The TF formulation is developed by spatially averaging the instantaneous equations of the carrier flow and bubble phase over a scale of the order of the Kolmogorov length scale which, in our case, is much larger than the bubble diameter. On that scale, the bubbles are treated as a continuum (without molecular diffusivity) characterized by the bubble phase velocity field and concentration (volume fraction). The bubble concentration, C, is assumed small enough to neglect the bubble-bubble interactions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference; 454-459; NASA/CP-1999-208526/SUPPL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...