ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-16
    Description: A new growth subroutine was developed for CERES-Wheat, a computer model of wheat (Triticum aestivum) growth and development. The new subroutine simulates canopy photosynthetic response to CO2 concentrations and light levels, and includes the effects of temperature on canopy light-use efficiency. Its performance was compared to the original CERES-Wheat V-2 10 in 30 different cases. Biomass and yield predictions of the two models were well correlated (correlation coefficient r 〉 0.95). As an application, summer growth of spring wheat was simulated at one site. Modeled crop responses to higher mean temperatures, different amounts of minimum and maximum warming, and doubled CO2 concentrations were compared to observations. The importance of irrigation and nitrogen fertilization in modulating the wheat crop climatic responses were also analyzed. Specifically, in agreement with observations, rainfed crops were found to be more sensitive to CO2 increases than irrigated ones. On the other hand, low nitrogen applications depressed the ability of the wheat crop to respond positively to CO2 increases. In general, the positive effects of high CO2 on grain yield were found to be almost completely counterbalanced by the negative effects of high temperatures. Depending on how temperature minima and maxima were increased, yield changes averaged across management practices ranged from -4% to 8%.
    Keywords: Life Sciences (General)
    Type: Agricultural systems (ISSN 0308-521X); 49; 135-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.
    Keywords: Life Sciences (General)
    Type: GSFC-E-DAA-TN21609 , Handbook of Climate Change and Agroecosystems; 3; 3-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...