ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (59)
  • BioMed Central  (1)
  • 2015-2019  (4)
  • 1995-1999  (24)
  • 1975-1979  (28)
  • 1960-1964  (2)
  • 1860-1869  (2)
Collection
Years
Year
  • 1
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Until now, many extracellular matrix proteins, e.g. osteopontin and osteonectin, have been used to determine a cell’s osteogenic maturation. The disadvantage in evaluation of these proteins is their relative wide-ranging appearance throughout the osteogenic differentiation process. Thus, the aim of this study was to establish an immunohistochemical setup using E11, a marker that binds selectively to cells of the late osteogenic cell lineage. In addition, the histochemical expression of the bone matrix proteins osteonectin, osteopontin and fibronectin was compared to that of E11 using monoclonal antibodies. For light microscopical detection of osteogenic markers in cultured cells we developed a simple paraffin technique using a fibrin glue as embedding medium. This allows the handling of cultured cells such as a tissue sample and includes the use of stored biological specimens for further immunohistochemical experiments. We used newborn rat calvariae for whole tissue preparations and for isolation and cultivation of bone cells. In addition, we included the rat osteosarcoma cell line ROS 17/2.8 in this study. For the first time, we have localised E11 in osteocytes of rat calvaria preparations at the electron microscopical level. E11 was detected at plasma membranes of osteocytes and their processes, but not at those of osteoblasts. Accompanying experiments with cultured newborn rat calvaria cells and ROS 17/2.8 cells revealed E11 reactivity on a subset of cells. The results obtained confirm the suitability of the differentiation marker E11 as a sensitive instrument for the characterisation of bone cell culture systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a previous paper seasonal shifts of the temperature optimum (OP) and of the upper temperature compensation point (CP) of net photosynthesis were described for Hammada scoparia growing wild, and for Prunus armeniaca cultivated in the Negev Desert (Israel). In this paper the relationships between these shifts and the microclimatic conditions, plant-water relations, and plant development are studied. The energy budged of the thin, round photosynthesizing stems of H. scoparia growing in an open desert habitat differes from that of the broad leaves of P. armeniaca within the orchard. This explains the fact that daily maximum temperatures of the apricot increased until August and September, whereas maximum temperatures of H. scoparia reached a peak in May and June and decreased thereafter during the second half of the growing season. For H. scoparia a correspondence was found between the daily maximum tissue temperatures (and also the average temperatures of the warmest periods of the day) and the seasonal changes of the OP and CP values. This may indicate that the shifts in the temperature sensitivity of net photosynthesis of this plant are adaptations to the temperature conditions of the plant. This, however, cannot be the case for P. armeniaca, where during the second part of the growing season a period of rising leaf temperatures coincides with a period of decreasing OP and CP values. Therefore, the seasonal changes of the temperature dependence of net photosynthesis of P. armeniaca could not always be considered an adaptation to the prevailing temperature conditions of the plant. In this case, the changes in temperature sensitivity of photosynthesis could be due to developmental processes such as aging. In both lants the seasonal changes of the OP and CP values correspond to changes of the daily photoperiod and to changes of the daily average light intensity. It appears possible that this correlation indicates a causal relationship.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The gas exchange of the apricot (Prunus armeniaca L.) growing in the runoff farm at Avdat (Negev, Israel) was measured during its growing period using temperature- and humidity-controlled chambers. Water potentials of the xylem were measured with a pressure bomb, and the mesophyll internal CO2 concentration was calculated from simultaneous measurements of net photosynthesis and transpiration. The daily changes in water potential Ψ had only little effect on the daily course of stomatal resistance. The early morning peak of CO2 uptake was reached when Ψ had already dropped to very low values. On dry days, Ψ and the relative water content of the leaf were improved at noon during the time of stomatal closure. On humid days, Ψ dropped to very low values (43.5 bar) at a high transpiration rate without causing stomatal closure, as much as on the dry days when stomata where more closed at less water stress. The observed changing sensitivity of the stomata to changes in air humidity during the season is related to the water status in the plant. This change is possibly caused by a long-term effect of stress in this habitat. The daily changes in stomatal diffusion resistance did not consistently correlate with changes of the CO2 concentration in the intercellular air spaces. In the morning a decreasing internal CO2 concentration was even inversely correlated to the stomatal response. In the afternoon the effect of an increasing internal CO2 concentration and the effect of external climate on stomatal response could be additive. However, at the time, when CO2 uptake reached a second peak in the afternoon the same value of diffusion resistance is reached at very different levels of internal CO2 concentration as compared to the morning. For the regulation of the diffusion resistance in apricot under the natural conditions, the effects of plant internal control mechanisms are overruled and/or modified by the external climatic factors of air humidity and temperature. The significance of the climate-controlled stomatal response for the existence and cultivation of this plant species in an arid habitat is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Key words Water transport ; Grass roots ; Hydraulic lift ; Deserts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Downward transport of water in roots, in the following termed “inverse hydraulic lift,” has previously been shown with heat flux techniques. But water flow into deeper soil layers was demonstrated in this study for the first time when investigating several perennial grass species of the Kalahari Desert under field conditions. Deuterium labelling was used to show that water acquired by roots from moist sand in the upper profile was transported through the root system to roots deeper in the profile and released into the dry sand at these depths. Inverse hydraulic lift may serve as an important mechanism to facilitate root growth through the dry soil layers underlaying the upper profile where precipitation penetrates. This may allow roots to reach deep sources of moisture in water-limited ecosystems such as the Kalahari Desert.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Measurements of CO2 and water vapor exchange were performed on Prunus armeniaca L. with humidity- and temperature-controlled chambers under the climatic conditions of a desert habitat. In apricot, the stomatal response to changes in temperature and water-vapor concentration difference between leaf and air (WD) significantly determined the rates of gas exchange during the day (parts I and II). The effect of climate-controlled stomatal response on the transpiration/net photosynthesis (T/P)-ratio was analyzed and simulated using experiments conducted at constant temperature and/or humidity conditions for input parameters. The measured values of the T/P-ratio at naturally varying conditions of humidity and temperature were compared with calculated results of a model in which it was assumed, (1) that stomata and photosynthetic activity are not affected by air humidity and temperature, (2) that the stomata only respond with a constant photosynthetic activity to changes in WD, and (3) that the stomata respond to both, leaf temperature and air humidity with a constant photosynthetic activity. These simulations facilitated an analysis of the naturally observed changes in the T/P-ratio. The calculated T/P-ratios were very small if the simulation assumed that stomata only respond to WD at a constant photosynthetic activity. These low predicted values of the T/P-ratio were not obtained under natural conditions, since an increase in WD during the day was correlated with a temperature rise which tended to open stomata and change the photosynthetic activity. Humidity induced stomatal closure did appear to substantially reduce T/P-ratios. The measured T/P-ratio changed considerably during the year. The lowest T/P-ratios were obtained in the middle of the dry season at a time when stomata responded strongly to air humidity and when optimum of photosynthesis was reached at high temperatures. The daily average T/P-ratio calculated from the daily sum of P and T showed little change during the seasons. A high T/P-ratio was also observed at reduced rates of gas exchange. The T/P-ratios of apricot were compared with different species in different environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 28 (1977), S. 247-259 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Previous publications have reported on investigations of CO2 exchange in the desert lichenRamalina maciformis both in its natural habitat in the Negev and in the laboratory. Utilizing laboratory data, net photosynthesis and dark respiration were expressed as mathematical functions of the most important environmental factors. Based on these relationships, a model is developed that allows one to predict CO2 exchange of the plant. Input data are light intensity, temperature, and water content of the thallus, together with a measure of the rate of the seasonal change of photosynthetic and respiratory activity. The validity of the model is tested by comparing simulated daily courses of CO2 uptake and release of the lichen with independent results of CO2 exchange measurements conducted in the field during and after the condensation of dew. The sensitivity of the model is shown by simulating changes in the input data of temperature and water content of the lichen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Biomass distribution and diurnal CO2 uptake under natural conditions were investigated on Picea abies in a mountainous climate (Solling, Northwest Germany). Spruce has a remarkable variability in leaf characteristics. Even on a single branch in the lower sun crown, needle dry weight and surface area change considerably from the branch base to the tip and accoring to exposure. Only about 18% of the total biomass of the tree was current year's growth, about 40% of the needles were 4 years and older reaching a maximal age of 12 years. The main growing zone was at the border of upper shade and lower sun crown and the main accumulation of dry weight was at a greater tree height than was observed for maximal growth of needle numbers or surface area. The annual, new growth shifted toward the upper sun crown. Maximal daily CO2 uptake was highest in the lower sun crown on days with variable cloud cover when temperatures were moderate and water vapor pressure deficits were low. Also the annual CO2 uptake was highest in the lower sun crown, where 4-year-old and older needles contributed about 35% to the annual CO2 uptake of the tree. Current year growth contributed about 15% of the total CO2 gain. The upper and lower sun crowns produce about 70% of the total carbon gain. The carbon balance of spruce and the distribution of the production process in relation to needle age and crown level are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Net photosynthesis of Picea abies was measured in a spruce forest in northern Germany with temperature- and humidity-controlled cuvettes in 4 different crown layers on shoots of different ages. These measurments were performed such that temperature and humidity either followed ambient conditions or were kept constant. Annual courses of light-, temperature-, and humidity-related net photosynthesis were determined. Spruce had a remarkably constant rate of CO2 uptake from April to September for 1-year and older needles. Light saturation was achieved at 25 klx. Current year needles had the highest rates of CO2 uptake in early summer, but these rates decreased by autumn. Photosynthetic capacity decreased with needle age and, on a dry weight basis, it was higher in the shade than in the sun crown. The temperature optimum was between 13 and 23° C. Photosynthesis in spruce decreased when air humidity was low. The effect of the natural weather conditions on photosynthetic capacity was determined. The habitat is characterized by a high frequency of low light intensities (75% of total daytime below 20 klx) and cool temperatures (80% of daytime between 9 and 21° C). Low air humidity was only present when light intensities were high. The major limiting factor for production was low light intensities, which reduced photosynthetic capacity in the sun crown to 42% below maximum possible rates. Adverse temperatures reduced CO2 uptake by 28% and large water vapor pressure deficits reduced rates by only 2% compared with maximum possible rates. The limited adaptation to light is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Key words Carnivorous plants ; Pitcher plants ; Insect nitrogen ; Nitrogen partitioning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study investigated the nitrogen (N) acquisition from soil and insect capture during the growth of three species of pitcher plants, Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. 15N/14N natural abundance ratios (δ15N) of plants and pitchers of different age, non-carnivorous reference plants, and insect prey were used to estimate proportional contributions of insects to the N content of leaves and whole plants. Young Nepenthes leaves (phyllodes) carrying closed pitchers comprised major sinks for N and developed mainly from insect N captured elsewhere on the plant. Their δ15N values of up to 7.2‰ were higher than the average δ15N value of captured insects (mean δ15N value = 5.3‰). In leaves carrying old pitchers that are acting as a N source, the δ15N decreased to 3.0‰ indicating either an increasing contribution of soil N to those plant parts which in fact captured the insects or N gain from N2 fixation by microorganisms which may exist in old pitchers. The δ15N value of N in water collected from old pitchers was 1.2‰ and contained free amino acids. The fraction of insect N in young and old pitchers and their associated leaves decreased from 1.0 to 0.3 mg g−1. This fraction decreased further with the size of the investigated tiller. Nepenthes contained on average 61.5 ± 7.6% (mean ± SD, range 50–71%) insect N based on the N content of a whole tiller. In the absence of suitable non-carnivorous reference plants for Cephalotus, δ15N values were assessed across a developmental sequence from young plants lacking pitchers to large adults with up to 38 pitchers. The data indicated dependence on soil N until 4 pitchers had opened. Beyond that stage, plant size increased with the number of catching pitchers but the fraction of soil N remained high. Large Cephalotus plants were estimated to derive 26 ± 5.9% (mean ± SD of the three largest plants; range: 19–30%) of the N from insects. In Cephalotus we observed an increased δ15N value in sink versus source pitchers of about 1.2‰ on average. Source and sink pitchers of Darlingtonia had a similar δ15N value, but plant N in this species showed δ15N signals closer to that of insect N than in either Cephalotus or Nepenthes. Insect N contributed 76.4 ± 8.4% (range 57–90%) to total pitcher N content. The data suggest complex patterns of partitioning of insect and soil-derived N between source and sink regions in pitcher plants and possibly higher dependence on insect N than recorded elsewhere for Drosera species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Terrestrial biomes ; Cumulative root fraction ; Root biomass ; Rooting density ; Soil depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled a database of 250 root studies, subdividing suitable results into 11 biomes, and fitted the depth coefficient β to the data for each biome (Gale and Grigal 1987). β is a simple numerical index of rooting distribution based on the asymptotic equation Y=1-βd, where d = depth and Y = the proportion of roots from the surface to depth d. High values of β correspond to a greater proportion of roots with depth. Tundra, boreal forest, and temperate grasslands showed the shallowest rooting profiles (β=0.913, 0.943, and 0.943, respectively), with 80–90% of roots in the top 30 cm of soil; deserts and temperate coniferous forests showed the deepest profiles (β=0.975 and 0.976, respectively) and had only 50% of their roots in the upper 30 cm. Standing root biomass varied by over an order of magnitude across biomes, from approximately 0.2 to 5 kg m-2. Tropical evergreen forests had the highest root biomass (5 kg m-2), but other forest biomes and sclerophyllous shrublands were of similar magnitude. Root biomass for croplands, deserts, tundra and grasslands was below 1.5 kg m-2. Root/shoot (R/S) ratios were highest for tundra, grasslands, and cold deserts (ranging from 4 to 7); forest ecosystems and croplands had the lowest R/S ratios (approximately 0.1 to 0.5). Comparing data across biomes for plant functional groups, grasses had 44% of their roots in the top 10 cm of soil. (β=0.952), while shrubs had only 21% in the same depth increment (β=0.978). The rooting distribution of all temperate and tropical trees was β=0.970 with 26% of roots in the top 10 cm and 60% in the top 30 cm. Overall, the globally averaged root distribution for all ecosystems was β=0.966 (r 2=0.89) with approximately 30%, 50%, and 75% of roots in the top 10 cm, 20 cm, and 40 cm, respectively. We discuss the merits and possible shortcomings of our analysis in the context of root biomass and root functioning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...