ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Morphological characterization of several polyethylene balloon films have been studied using various techniques. The objective is to determine, if any, differentiating structural or morphological features that can be related to the performance of these balloon film materials. The results of the study indicate that the films are composed of either linear low denstiy polyethylene (LLDPE) or low density polyethylene (LDPE). A selective examination of these data imply that films limited degree of branching and larger crystallites size (same % crystallinity) showed good mechanical properties that appear to correlate with their high level of success in balloon flights.
    Keywords: NONMETALLIC MATERIALS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)31-(2)34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.
    Keywords: MATERIALS PROCESSING
    Type: NASA. Lewis Research Center, The 3rd International Microgravity Combustion Workshop; p 345-350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: This is a new project which started in May 1996. The main objective of the experimental/numerical study is to improve the understanding of the physics of two-way coupling between the dispersed phase and turbulence in a prototypical turbulent shear flow - homogeneous shear, laden with small liquid droplets (in gas) or gaseous bubbles (in liquid). The method of direct numerical simulation (DNS) is used to solve the full three-dimensional, time-dependent Navier-Stokes equations including the terms describing the two-way coupling between the dispersed phase and the carrier flow. The results include the temporal evolution of the three-dimensional energy and dissipation spectra and the rate of energy transfer across the energy spectrum to understand the fundamental physics of turbulence modulation, especially the effects of varying the magnitude of gravitational acceleration. The mean-square displacement and diffusivity of the droplets (or bubbles) of a given size and the preferential accumulation of droplets in low vorticity regions and bubbles in high vorticity regions will be examined in detail for different magnitudes of gravitational acceleration. These numerical results which will be compared with their corresponding measured data will provide a data base from which a subgrid-scale (SGS) model can be developed and validated for use in large-eddy simulation (LES) of particle-laden shear flows. Two parallel sets of experiments will be conducted: bubbles in an immiscible liquid and droplets in air. In both experiments homogeneous shear will be imposed on the turbulent carrier flow. The instantaneous velocities of the fluid and polydispersed-size particles (droplets or bubbles) will be measured simultaneously using a two-component Phase-Doppler Particle Analyzer (PDPA). Also, the velocity statistics and energy spectra for the carrier flow will be measured.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 443-448; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-25
    Description: The effect of stress and temperature path on the mechanical properties of a balloon film material (Astrofilm E2) have been studied using two techniques. The first technique is based on uniaxial tensile measurements of prestrained strips of the film as a function of temperature. Data are analyzed in terms of two temperature coefficients, defined here as a stiffness coefficient and a strength coefficient; and by comparing the areas under the stress-strain curves. The second technique investigated the effect of stress and temperature path on inflated cylinders of the same material. The changes in the mechanical properties due to preconditioning in the biaxial stress state were evaluated using the ball burst test. Preliminary findings indicate that the material is stress and temperature path dependent. Changes in stiffness coefficient, draw strength and toughness were measured and discussed. The above techniques may be suitable to document path dependent changes, and to discriminate among films of different manufacture.
    Keywords: NONMETALLIC MATERIALS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 2; p. (2)27-(2)30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Description: This paper describes a technique for measuring trace quantities of oxygen and moisture contaminants present in a somi-conductor and/or containerless processing environment.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The present numerical study is concerned with the fundamental physics of the multi-way interaction between turbulence, chemical reaction and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous three-dimensional governing equations (continuity, Navier-Stokes, species mass fractions and energy) under the zero-Mach number assumption. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 173-178; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.
    Keywords: Inorganic and Physical Chemistry
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A reversal electron, high-current ionizer capable of focusing a beam of electrons to a reversal region employs an indirectly heated cathode having a concave emitting surface of width of W less than 2r, where r is the radius of curvature and preferably a ratio of width to radius approximately equal to one for optimum high current for a given cathode width.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Laser induced damage thresholds and morphologies were investigated in a variety of uncoated and coated surfaces, including monolayers and multi-layers of different chemical compositions. Both antireflective (AR) and highly reflective (HR) were tested. Testing was done at 1064 nm with 25 picosecond and 8 nanosecond YAG/Nd laser single pulses. Spot diameter in the experiments varied from 0.09 to 0.22 mm. The laser damage measurement procedure consisted of 1-on-1 (single laser pulse in the selected site) and N-on-1 experiments including repeated irradiation by pulses of the same fluence and subsequently raised from pulse to pulse fluence until damage occurred. The highest picosecond damage thresholds of commercially available coatings averaged 12 - 14 J/sq cm, 50 percent less than thresholds obtained in bare fused silica. Some coatings and bare surfaces revealed a palpable preconditioning effect (an increase in threshold of 1.2 to 1.8 times). Picosecond and nanosecond data were compared to draw conclusions about pulse width dependence. An attempt was made to classify damage morphologies according to the type of coating, class of irradiating, and damage level.
    Keywords: LASERS AND MASERS
    Type: NASA-CR-192156 , NAS 1.26:192156
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...