ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p 〈 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 74; 8; 882-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Type: Mount Pelce 1902-2002; Martinique; Dominican Republic
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Type: AGU Fall Meeting 2001; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37997 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Background: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and one ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine the spaceflight-related atherosclerosis risk independent of the confounding factors associated with different genotypes. Purpose: The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we will simultaneously assess gene expression and DNA methylation in leukocytes. Hypothesis: We predict that the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated atherosclerosis risk factors. Conversely, these will not be observed in the ground-based twin. Methods: We will measure blood and urine biomarkers of oxidative stress and inflammation as well as arterial structure and function (carotid intima-medial thickness and brachial artery flow-mediated dilation) in one twin astronaut before, during, and after long-duration spaceflight and in his twin serving as a ground-based control. Furthermore, we will measure metabolomics (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) to elucidate the molecular mechanisms involved. A panel of biomarkers of oxidative and inflammatory stress will be measured in venous blood samples and 24-hour (in-flight) and 48-hour (pre- and post-flight) urine pools twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the post-flight recovery phase (approximately 3-5 days after landing). Arterial structure, assessed from measures of intima-media thickness, will be measured at the same times. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. Discussion: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Blood and urine samples will be batch processed when received from ISS after the conclusion of the 1-year mission. Results from these individual subjects will be compared to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34856 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32334 , Annual Aerospace Medical Association Meeting; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: During EVA (Extravehicular Activity) No. 23 aboard the ISS (International Space Station) on 07/16/2013 water entered the EMU (Extravehicular Mobility Unit) helmet resulting in the termination of the EVA (Extravehicular Activity) approximately 1-hour after it began. It was estimated that 1.5-L of water had migrated up the ventilation loop into the helmet, adversely impacting the astronauts hearing, vision and verbal communication. Subsequent on-board testing and ground-based TT and E (Test, Tear-down and Evaluation) of the affected EMU hardware components led to the determination that the proximate cause of the mishap was blockage of all water separator drum holes with a mixture of silica and silicates. The blockages caused a failure of the water separator function which resulted in EMU cooling water spilling into the ventilation loop, around the circulating fan, and ultimately pushing into the helmet. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Filter Beds which led to various levels of contaminants being introduced into the Filters before they left the ground. Those contaminants were thereafter introduced into the EMU hardware on-orbit during ALCLR scrubbing operations. This paper summarizes the failure analysis results along with identified process, hardware and operational corrective actions that were implemented as a result of findings from this investigation.
    Keywords: Space Transportation and Safety; Man/System Technology and Life Support
    Type: JSC-CN-32278 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: NASA has concerns regarding the incidence and clinical significance of cardiac arrhythmias that could occur during long-term exposure to the spaceflight environment, such as on the International Space Station (ISS) or during a prolonged (e.g., up to 3 years) sojourn to Mars or on the Moon. There have been some anecdotal reports and a few documented cases of cardiac arrhythmias in space, including one documented episode of non-sustained ventricular tachycardia. The potential catastrophic nature of a sudden cardiac death in the remote space environment has led to concerns from the early days of the space program that spaceflight might be arrhythmogenic. Indeed, there are known and well-defined changes in the cardiovascular system with spaceflight: a) plasma volume is reduced, b) left ventricular mass is decreased, and c) the autonomic nervous system adapts to the weightless environment. Combined, these physiologic adaptations suggest that changes in cardiac structure and neuro-humoral environment during spaceflight could alter electrical conduction, although the evidence supporting this contention consists mostly of minor changes in QT interval (the time between the start of the Q wave and the end of the T wave on an electrocardiogram tracing) in a small number of astronauts after long-duration spaceflight. Concurrent with efforts by NASA Medical Operations to refine and improve screening techniques relevant to arrhythmias and cardiovascular disease, as NASA enters the era of exploration-class missions it will be critical to determine with the highest degree of certainty whether spaceflight by itself alters cardiac structure and function sufficiently to increase the risk of arrhythmias.
    Keywords: Aerospace Medicine
    Type: JSC-CN-39745
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth.
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN49801
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Astronauts and cosmonauts may experience symptoms of orthostatic intolerance during re-entry, landing, and for several days post-landing following short- and long-duration spaceflight. Presyncopal symptoms have been documented in approximately 20% of short-duration and greater than 60% of long-duration flyers on landing day specifically during 5-10 min of controlled (no countermeasures employed at the time of testing) stand tests or 80 deg head-up tilt tests. Current operational countermeasures to orthostatic intolerance include fluid loading prior to and whole body cooling during re-entry as well as compression garments that are worn during and for up to several days after landing. While both NASA and the Russian space program have utilized compression garments to protect astronauts and cosmonauts traveling on their respective vehicles, a "next-generation" gradient compression garment (GCG) has been developed and tested in collaboration with a commercial partner to support future space flight missions. Unlike previous compression garments used operationally by NASA that provide a single level of compression across only the calves, thighs, and lower abdomen, the GCG provides continuous coverage from the feet to below the pectoral muscles in a gradient fashion (from approximately 55 mm Hg at the feet to approximately 16 mmHg across the abdomen). The efficacy of the GCG has been demonstrated previously after a 14-d bed rest study without other countermeasures and after short-duration Space Shuttle missions. Currently the GCG is being tested during a stand test following long-duration missions (~6 months) to the International Space Station. While results to date have been promising, interactions of the GCG with other space suit components have not been examined. Specifically, it is unknown whether wearing the GCG over NASA's Maximum Absorbency Garment (MAG; absorbent briefs worn for the collection of urine and feces while suited during re-entry and landing) will interfere with the effectiveness of the GCG or conversely whether the GCG will reduce the fluid absorption capabilities of the MAG. Methods: This operational, directed study, will (1) determine whether the effectiveness of the GCG is affected by the MAG with regard to cardiovascular responses to head-up tilt, the standard orthostatic intolerance test employed for astronauts and bed rest subjects; (2) determine whether the effectiveness of the MAG is compromised by the GCG tested by injecting a standard fluid volume (950 ml in 3 separate simulated "urine voids") at a standardized rate (30 ml/sec); and (3) determine whether comfort is affected by wearing the MAG under the GCG using a standardized questionnaire. Results from this study will guide future development and operational use of the GCG and MAG to maximize crew health, safety, and comfort.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38003 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...