ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Statistical Physics  (4)
  • Computational Physics  (3)
  • Earth Resources and Remote Sensing  (3)
  • 2015-2019  (10)
  • 1
    Publication Date: 2016-03-18
    Description: Author(s): Puneet Kumar Patra and Baidurya Bhattacharya We propose a mechanism that enables heat flow from a colder region to a hotter region without necessitating either particle transport or external work on the conductor, thereby bypassing the compressor part of a classical heat pump cycle. Our mechanism relies on thermostatting the kinetic and config… [Phys. Rev. E 93, 033308] Published Thu Mar 17, 2016
    Keywords: Computational Physics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-21
    Description: Author(s): Puneet Kumar Patra and Baidurya Bhattacharya Crook's fluctuation theorem (CFT) and Jarzynski equality (JE) are effective tools for obtaining free-energy difference Δ F ( λ A → λ B , T 0 ) through a set of finite-time protocol driven nonequilibrium transitions between two equilibrium states A and B [parametrized by the time-varying protocol λ ( t ) ] at the s… [Phys. Rev. E 94, 040101(R)] Published Thu Oct 20, 2016
    Keywords: Statistical Physics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-14
    Description: Author(s): Christopher Jarzynski, Sebastian Deffner, Ayoti Patra, and Yiğit Subaşı We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H = p 2 / 2 m + U ( q , t ) in one degree of freedom, and for an arbitrary choice of action I 0 , we construct a so-called fast-forward potential energy function … [Phys. Rev. E 95, 032122] Published Fri Mar 10, 2017
    Keywords: Statistical Physics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-08
    Description: Author(s): Saugata Patra, Dibyendu Das, R. Rajesh, and Mithun K. Mitra It is known from grand canonical simulations of a system of hard rods on two-dimensional lattices that an orientationally ordered nematic phase exists only when the length of the rods is at least seven. However, a recent microcanonical simulation with diffusion kinetics, conserving both total densit... [Phys. Rev. E 97, 022108] Published Wed Feb 07, 2018
    Keywords: Statistical Physics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-26
    Description: Author(s): Swayamshree Patra and Debashish Chowdhury We introduce a multispecies exclusion model where length-conserving probabilistic fusion and fission of the hard rods are allowed. Although all rods enter the system with the same initial length ℓ = 1 , their length can keep changing, because of fusion and fission, as they move in a step-by-step manner... [Phys. Rev. E 97, 012138] Published Thu Jan 25, 2018
    Keywords: Statistical Physics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-18
    Description: Author(s): Puneet Kumar Patra, Marc Meléndez, and Baidurya Bhattacharya Distribution functions for systems in nonequilibrium steady states are usually determined through detailed experiments, both in numerical and real-life settings in the laboratory. However, for a protocol-driven distribution function, it is usually prohibitive to perform such detailed experiments for… [Phys. Rev. E 92, 023304] Published Mon Aug 17, 2015
    Keywords: Computational Physics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-12
    Description: Author(s): Puneet Kumar Patra and Romesh C. Batra We identify the temperature being measured by a thermometer in a nonequilibrium scenario by studying heat conduction in a three-dimensional Lennard-Jones (LJ) system whose two ends are kept at different temperatures. It is accomplished by modeling the thermometer particles also with the LJ potential… [Phys. Rev. E 95, 013302] Published Tue Jan 10, 2017
    Keywords: Computational Physics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The powerful El Nio event of 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. The column-averaged CO2 dry-air mole fraction (XCO2) observations from satellites and ground based networks are analyzed together with in situ observations for the period of September 2014 to October 2016. From the differences between satellite (OCO-2) observations and simulations using an atmospheric chemistry-transport model, we estimate that, relative to the mean annual fluxes for 2014, the most recent El Nio has contributed to an excess CO2 emission from the Earth's surface (land+ocean) to the atmosphere in the range of 2.4+/-0.2 PgC (1 Pg = 10(exp 15) g) over the period of July 2015 to June 2016. The excess CO2 flux is resulted primarily from reduction in vegetation uptake due to drought, and to a lesser degree from increased biomass burning. It is about the half of the CO2 flux anomaly (range: 4.4-6.7 PgC) estimated for the 1997/1998 El Nio. The annual total sink is estimated to be 3.9+/-0.2 PgC for the assumed fossil fuel emission of 10.1 PgC. The major uncertainty in attribution arise from error in anthropogenic emission trends, satellite data and atmospheric transport.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47575 , Scientific Reports (e-ISSN 2045-2322); 7; 13567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: There is more useful information in the time series of satellite-derived column-averaged carbon dioxide (XCO2) than is typically characterized. Often, the entire time series is treated at once without considering detailed features at shorter timescales, such as nonstationary changes in signal characteristics amplitude, period and phase. In many instances, signals are visually and analytically differentiable from other portions in a time series. Each rise (increasing) and fall (decreasing) segment in the seasonal cycle is visually discernable in a graph of the time series. The rise and fall segments largely result from seasonal differences in terrestrial ecosystem production, which means that the segment's signal characteristics can be used to establish observational benchmarks because the signal characteristics are driven by similar underlying processes. We developed an analytical segmentation algorithm to characterize the rise and fall segments in XCO2 seasonal cycles. We present the algorithm for general application of the segmentation analysis and emphasize here that the segmentation analysis is more generally applicable to cyclic time series. We demonstrate the utility of the algorithm with specific results related to the comparison between satellite- and model-derived XCO2 seasonal cycles (20092012) for large bioregions across the globe. We found a seasonal amplitude gradient of 0.740.77 ppm for every 10 of latitude in the satellite data, with similar gradients for rise and fall segments. This translates to a southnorth seasonal amplitude gradient of 8 ppm for XCO2, about half the gradient in seasonal amplitude based on surface site in situ CO2 data (19 ppm). The latitudinal gradients in the period of the satellite-derived seasonal cycles were of opposing sign and magnitude (9 d per 10 latitude for fall segments and 10 d per 10 latitude for rise segments) and suggest that a specific latitude (2 N) exists that defines an inversion point for the period asymmetry. Before (after) the point of asymmetry inversion, the periods of rise segments are lesser (greater) than the periods of fall segments; only a single model could reproduce this emergent pattern. The asymmetry in amplitude and the period between rise and fall segments introduces a novel pattern in seasonal cycle analyses, but, while we show these emergent patterns exist in the data, we are still breaking ground in applying the information for science applications. Maybe the most useful application is that the segmentation analysis allowed us to decompose the model biases into their correlated parts of biases in amplitude, period and phase independently for rise and fall segments. We offer an extended discussion on how such information about model biases and the emergent patterns in satellite-derived seasonal cycles can be used to guide future inquiry and model development.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN71731 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 12; 5; 2611–2629
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000- 2012, we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000-2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000-2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008-2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16-32] Tg CH4 yr(exp -1) higher methane emissions over the period 2008-2012 compared to 2002-2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002-2006 and 2008-2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN55361 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 20; 18; 11135-11161
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...