ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (3)
  • 2015-2019  (3)
  • 2000-2004
  • 1
    Publication Date: 2019-05-21
    Description: Recent advances in laboratory spectroscopy lead to the claim of ionized Buckminsterfullerene (C60(+)) as the carrier of two diffuse interstellar bands (DIBs) in the near-infrared. However, irrefutable identication of interstellar C60(+) requires a match between the wavelengths and the expected strengths of all absorption features detectable in the laboratory and in space. Here we present Hubble Space Telescope (HST) spectra of the region covering the C60(+) 9348, 9365, 9428, and 9577 absorption bands toward seven heavily reddened stars. We focus in particular on searching for the weaker laboratory C60(+) bands, the very presence of which has been a matter for recent debate. Using the novel STIS-scanning technique to obtain ultra-high signal-to-noise spectra without contamination from telluric absorption that aficted previous ground-based observations, we obtained reliable detections of the (weak) 9365, 9428 and (strong) 9577 C60(+) bands. The band wavelengths and strength ratios are sufciently similar to those determined in the latest laboratory experiments that we consider this the rst robust identication of the 9428 band, and a conclusive conrmation of interstellar C60(+).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68405 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 875; 2; L28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Nitrogen-bearing molecules in cold molecular clouds exhibit a range of isotopic fractionation ratios and these molecules may be the precursors of 15N enrichments found in comets and meteorites. Chemical model calculations indicate that atom-molecular ion and ion-molecule reactions could account for most of the fractionation patterns observed. However, recent quantum-chemical computations demonstrate that several of the key processes are unlikely to occur in dense clouds. Related model calculations of dense cloud chemistry show that the revised 15N enrichments fail to match observed values. We have investigated the effects of these reaction rate modifications on the chemical model of Wirstrom et al. (2012) for which there are significant physical and chemical differences with respect to other models. We have included 15N fractionation of CN in neutral-neutral reactions and also updated rate coefficients for key reactions in the nitrogen chemistry. We find that the revised fractionation rates have the effect of suppressing 15N enrichment in ammonia at all times, while the depletion is even more pronounced, reaching 14N/15N ratios of 〉2000. Taking the updated nitrogen chemistry into account, no significant enrichment occurs in HCN or HNC, contrary to observational evidence in dark clouds and comets, although the 14N/15N ratio can still be below 100 in CN itself. However, such low CN abundances are predicted that the updated model falls short of explaining the bulk 15N enhancements observed in primitive materials. It is clear that alternative fractionating reactions are necessary to reproduce observations, so further laboratory and theoretical studies are urgently needed.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN54008 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); 474; 3; 3720-3726
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: IRAS19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and 1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN40387 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 828; 1; 51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...