ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-30
    Description: We used airborne light detection and ranging (LiDAR) data to reevaluate the single-event offsets of the 1920 Haiyuan Ms 8.5 earthquake and the cumulative offsets along the western and middle segments of the coseismic surface rupture zone. Our LiDAR data indicate that the offset observations along both the western and middle segments fall into groups. The group with the minimum slip amount is associated with the 1920 Haiyuan Ms 8.5 earthquake, which ruptured both the western and middle segments. Our research highlights two new interpretations: First, the previously reported maximum displacement of the 1920 earthquake was likely due to at least two earthquakes; second, our results reveal that the cumulative offset probability density (COPD) peaks of the same offset amounts on the western and middle segments do not correspond to one another one-to-one. We suggest that any discussion of the rupture pattern of a certain fault based on the offset data should also consider fault segmentation and paleoseismological data. Therefore, the COPD peaks should be computed and analyzed on fault subsections and not entire fault zones to study the number of paleoearthquakes and their rupture patterns.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-12
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-12
    Description: Indian summer monsoon (ISM) variations have been linked to the orbital-scale boreal summer insolation and millennial-scale North Atlantic climates. Recent studies show the critical role of Indian Ocean sea-surface temperatures (SSTs) in affecting deglacial millennial-scale monsoon oscillations. However, it is unclear whether SSTs can affect monsoon rainfall and terrestrial hydroclimate during the Holocene. Here we report multiproxy evidence of hydroclimate changes in southwest China since the Last Glacial Maximum. Similar to the often-documented gradual decrease in Holocene monsoon rainfall with superimposed millennial-scale variations, our records particularly show pronounced hydroclimate fluctuations including wet conditions at ~5000-4000 yr ago, and perhaps over the past 1000 yr. We also find coherent variations between our records and sea-surface salinities in the eastern Indian Ocean, suggesting that terrestrial hydroclimate and resultant continental drainage have affected surface ocean conditions. These fluctuations are likely linked to changes in SSTs downstream of the monsoon source in the tropical western Indian Ocean, i.e., a warmer ocean and more monsoon rainfall. We conclude that the influence of both insolation and tropical SSTs on the ISM has persisted from the last deglaciation into Holocene.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-19
    Description: It is widely accepted that the lithospheric mantle under the North China craton (NCC) has undergone comprehensive refertilization due to input from surrounding subducted slabs. However, the possible contribution from the Paleo-Asian oceanic slab to the north is poorly constrained, largely because of the lack of convincing evidence for the existence of this slab under the NCC. We report here carbonatite intruding Neogene alkali basalts in the Hannuoba region, close to the northern margin of the NCC. Trace element patterns with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti) and Ce anomalies, high 87 Sr/ 86 Sr ratios (0.70522-0.70796), and high 18 O SMOW (standard mean ocean water) values (22.2–23) indicate that this carbonatite had a limestone precursor. However, the presence of coarse-grained mantle-derived clinopyroxene, orthopyroxene, and olivine, and chemical features of the carbonates suggest that the carbonate melts were derived from the mantle. The carbonates have high 143 Nd/ 144 Nd ratios (0.51282-0.51298) and show negative correlation between CaO and Ni contents, resulting from reaction between carbonate melt and peridotite. Considering the regional tectonic setting, the carbonatite probably formed by melting of subducted sedimentary carbonate rocks that formed part of the Paleo-Asian oceanic slab, and thus could provide the first direct evidence for the presence of the Paleo-Asian oceanic slab beneath the NCC.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-22
    Description: The start of the Mesozoic Era is marked by roughly 5 m.y. of Earth system upheavals, including unstable biotic recovery, repeated global warming, ocean anoxia, and perturbations in the global carbon cycle. Intervals between crises were comparably hospitable to life. The causes of these upheavals are unknown, but are thought to be linked to recurrent Siberian volcanism. Here, two marine sedimentary successions at Chaohu and Daxiakou (South China) are evaluated for paleoclimate change from astronomical forcing. In these sections, gamma-ray variations indicative of terrestrial weathering reveal enhanced obliquity cycling over prolonged intervals, characterized by a 32.8 k.y. periodicity with strong 1.2 m.y. modulations. These suggest a 22 h length of day and 1.2 m.y. interaction between the orbital inclinations of Earth and Mars. Comparing the 1.2 m.y. obliquity modulation cycles in these sections with Early Triassic records of global sea level, temperature, redox, and biotic evolution suggests that long-term astronomical forcing was involved in the repeated climatic and biotic upheavals that took place throughout the Early Triassic.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: 〈span〉Biotic extinction during the Guadalupian-Lopingian (G-L) transition is actively debated, with its timing, validity, and causality all questioned. Here, we show, based on detailed sedimentary, paleoecologic, and geochemical analyses of the Penglaitan section in South China, that this intra-Permian biotic crisis began with the demise of a metazoan reef system and extinction of corals and alatoconchid bivalves in the late Guadalupian. A second crisis, among nektonic organisms, occurred around the G-L boundary. Mercury concentration/total organic carbon (Hg/TOC) ratios show two anomalies. The first Hg/TOC peak broadly coincides with the reef collapse and a positive shift in Δ〈sup〉199〈/sup〉Hg values during a lowstand interval, which was followed by microbial proliferation. A larger Hg/TOC peak is found just above the G-L boundary and speculatively represents a main eruption episode of the Emeishan large igneous province (ELIP). This volatile volcanism coincided with nektonic extinction, a negative δ〈sup〉13〈/sup〉C〈sub〉carb〈/sub〉 excursion, anoxia, and sea-level rise. The temporal coincidence of these phenomena supports a cause-and-effect relationship and indicates that the eruption of the ELIP likely triggered the G-L crisis.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉Biotic extinction during the Guadalupian-Lopingian (G-L) transition is actively debated, with its timing, validity, and causality all questioned. Here, we show, based on detailed sedimentary, paleoecologic, and geochemical analyses of the Penglaitan section in South China, that this intra-Permian biotic crisis began with the demise of a metazoan reef system and extinction of corals and alatoconchid bivalves in the late Guadalupian. A second crisis, among nektonic organisms, occurred around the G-L boundary. Mercury concentration/total organic carbon (Hg/TOC) ratios show two anomalies. The first Hg/TOC peak broadly coincides with the reef collapse and a positive shift in Δ〈sup〉199〈/sup〉Hg values during a lowstand interval, which was followed by microbial proliferation. A larger Hg/TOC peak is found just above the G-L boundary and speculatively represents a main eruption episode of the Emeishan large igneous province (ELIP). This volatile volcanism coincided with nektonic extinction, a negative δ〈sup〉13〈/sup〉C〈sub〉carb〈/sub〉 excursion, anoxia, and sea-level rise. The temporal coincidence of these phenomena supports a cause-and-effect relationship and indicates that the eruption of the ELIP likely triggered the G-L crisis.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-29
    Description: A detailed, 10 m.y. redox history of Changhsingian to Anisian (latest Permian to Middle Triassic) oceans in ramp settings is reconstructed based on framboidal pyrite analysis from South China. The result shows that the well-established phenomenon of intense ocean euxinia-anoxia is faithfully recorded in pyrite framboid data. Three major euxinia-anoxia episodes, namely, the end-Changhsingian to end-Smithian, middle to late Spathian, and early to middle Anisian, have been recognized from the ramp successions. The first reducing episode is subdivided into four subepisodes: Permian-Triassic boundary, Griesbachian-Dienerian boundary, earliest Smithian, and end-Smithian. Redox variations broadly track other oceanographic proxies. Euxinia-anoxia episodes coincide with positive excursions of conodont Ce anomalies, negative excursions of 34 S cas (carbonate-associated sulfate), increases in sea-surface temperature, and negative excursions of 13 C in most cases. However, euxinia-anoxia near the Dienerian-Smithian boundary coincided with positive excursions of 13 C and a general cooling period. This exception may be the result of locally developed water-column anoxia. The Permian-Triassic boundary subepisode witnessed two ephemeral euxinia-anoxia events separated by a dysoxic to oxic period. The former, together with a rapid increase in sea-surface temperature (up to 8 °C), may have been responsible for the biodiversity crisis, while the latter anoxic event destroyed ecosystem trophic structures. In addition to the Permian-Triassic boundary euxinia-anoxia event, which spread over habitats in all oceans, the Spathian and Anisian euxinia-anoxia episodes also prevailed in global oceans. Variation of the oxygen minimum zone are suggested as the driving mechanism that facilitated the movement of oxygen-poor water columns in various paleogeographic settings over this critical period.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈span〉Geochemical evidence suggests that terminal Ediacaran (ca. 551–539 Ma) oceans experienced expansive anoxia and dynamic redox conditions, which are expected to have impacted animal distribution and behaviors. However, fossil evidence for oxygen-related behaviors of terminal Ediacaran animals is poorly documented. Here, we report a terminal Ediacaran trace fossil that records redox-regulated behaviors. This trace fossil, 〈span〉Yichnus levis〈/span〉 new ichnogenus and new ichnospecies, consists of short and uniserially aligned segments of horizontal burrows that are closely associated with microbial mats. Thin-section analysis shows that the trace-making animal moved repeatedly in and out of microbial mats, with mat-burrowing intervals interspersed by epibenthic intermissions. This animal is hypothesized to have been a bilaterian exploring an oxygen oasis in microbial mats. Such intermittent burrowing behavior reflects challenging and dynamic redox conditions in both the water column and microbial mats, highlighting the close relationship between terminal Ediacaran animals and redox dynamics.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-21
    Description: Uranium isotopes ( 238 U/ 235 U) in carbonates, a proxy for global-ocean redox conditions owing to their redox sensitivity and long residence time in seawater, exhibit substantial variability in the Daxiakou section of south China from the upper-middle Permian through the mid-lower Triassic (~9 m.y.). Middle and late Permian ocean redox conditions were similar to that of the modern ocean and were characterized by improving oxygenation in the ~2 m.y. prior to the latest Permian mass extinction (LPME), countering earlier interpretations of sustained or gradually expanding anoxia during this interval. The LPME coincided with an abrupt negative shift of 〉0.5 in 238 U that signifies a rapid expansion of oceanic anoxia. Intensely anoxic conditions persisted for at least ~700 k.y. (Griesbachian), lessening somewhat during the Dienerian. Th/U concentration ratios vary inversely with 238 U during the Early Triassic, with higher ratios reflecting reduced U concentrations in global seawater as a consequence of large-scale removal to anoxic facies. Modeling suggests that 70%–100% of marine U was removed to anoxic sinks during the Early Triassic, resulting in seawater U concentrations of 〈5% that of the modern ocean. Rapid intensification of anoxia concurrent with the LPME implies that ocean redox changes played an important role in the largest mass extinction event in Earth history.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...