ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-28
    Description: In order to improve our understanding of hazardous underground cavities, the development and collapse of a ~200 m wide salt solution mining cavity was seismically monitored in the Lorraine basin in northeastern France. The microseismic events show a swarm-like behaviour, with clustering sequences lasting from seconds to days, and distinct spatiotemporal migration. Observed microseismic signals are interpreted as the result of detachment and block breakage processes occurring at the cavity roof. Body wave amplitude patterns indicated the presence of relatively stable source mechanisms, either associated with dip-slip and/or tensile faulting. Signal overlaps during swarm activity due to short interevent times, the high-frequency geophone recordings and the limited network station coverage often limit the application of classical source analysis techniques. To overcome these shortcomings, we investigated the source mechanisms through different procedures including modelling of observed and synthetic waveforms and amplitude spectra of some well-located events, as well as modelling of peak-to-peak amplitude ratios for the majority of the detected events. We extended the latter approach to infer the average source mechanism of many swarming events at once, using multiple events recorded at a single three component station. This methodology is applied here for the first time and represents a useful tool for source studies of seismic swarms and seismicity clusters. The results obtained with different methods are consistent and indicate that the source mechanisms for at least 50 per cent of the microseismic events are remarkably stable, with a predominant thrust faulting regime with faults similarly oriented, striking NW–SE and dipping around 35°–55°. This dominance of consistent source mechanisms might be related to the presence of a preferential direction of pre-existing crack or fault structures. As an interesting byproduct, we demonstrate, for the first time directly on seismic data, that the source radiation pattern significantly controls the detection capability of a seismic station and network.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-11
    Description: Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-12
    Description: Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-07
    Description: The M  7.8 2015 April 25 Gorkha earthquake devastated the mountainous southern rim of the High Himalayan range in central Nepal. The main shock was followed by 553 earthquakes of local magnitude greater than 4.0 within the first 45 days. In this study, we present and qualify the bulletin of the permanent National Seismological Centre network to determine the spatio-temporal distribution of the aftershocks. The Gorkha sequence defines a ~140-km-long ESE trending structure, parallel to the mountain range, abutting on the presumed extension of the rupture plane of the 1934 M  8.4 earthquake. In addition, we observe a second seismicity belt located southward, under the Kathmandu basin and in the northern part of the Mahabarat range. Many aftershocks of the Gorkha earthquake sequence have been felt by the 3 millions inhabitants of the Kathmandu valley.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-05
    Description: Owing to the increasing availability of computational resources, in recent years the probabilistic solution of non-linear, geophysical inverse problems by means of sampling methods has become increasingly feasible. Nevertheless, we still face situations in which a Monte Carlo approach is not practical. This is particularly true in cases where the evaluation of the forward problem is computationally intensive or where inversions have to be carried out repeatedly or in a timely manner, as in natural hazards monitoring tasks such as earthquake early warning. Here, we present an alternative to Monte Carlo sampling, in which inferences are entirely based on a set of prior samples—that is, samples that have been obtained independent of a particular observed datum. This has the advantage that the computationally expensive sampling stage becomes separated from the inversion stage, and the set of prior samples—once obtained—can be reused for repeated evaluations of the inverse mapping without additional computational effort. This property is useful if the problem is such that repeated inversions of independent data have to be carried out. We formulate the inverse problem in a Bayesian framework and present a practical way to make posterior inferences based on a set of prior samples. We compare the prior sampling based approach to a Markov Chain Monte Carlo approach that samples from the posterior probability distribution. We show results for both a toy example, and a realistic seismological source parameter estimation problem. We find that the posterior uncertainty estimates obtained based on prior sampling can be considered conservative estimates of the uncertainties obtained by directly sampling from the posterior distribution.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-16
    Description: In general, seismic slip along faults reduces the average shear stress within earthquake source regions, but stress drops of specific earthquakes are observed to vary widely in size. To advance our understanding of variations in stress drop, we analysed source parameters of small-magnitude events in the greater San Gorgonio area, southern California. In San Gorgonio, the regional tectonics are controlled by a restraining bend of the San Andreas fault system, which results in distributed crustal deformation, and heterogeneous slip along numerous strike-slip and thrust faults. Stress drops were estimated by fitting a Brune-type spectral model to source spectra obtained by iteratively stacking the observed amplitude spectra. The estimates have large scatter among individual events but the median of event populations shows systematic, statistically significant variations. We identified several crustal and faulting parameters that may contribute to local variations in stress drop including the style of faulting, changes in average tectonic slip rates, mineralogical composition of the host rocks, as well as the hypocentral depths of seismic events. We observed anomalously high stress drops (〉20 MPa) in a small region between the traces of the San Gorgonio and Mission Creek segments of the San Andreas fault. Furthermore, the estimated stress drops are higher below depths of ~10 km and along the San Gorgonio fault segment, but are lower both to the north and south away from San Gorgonio Pass, showing an approximate negative correlation with geologic slip rates. Documenting controlling parameters of stress-drop heterogeneity is important to advance regional hazard assessment and our understanding of earthquake rupture processes.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-11
    Description: We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg–Richter law. This power law describes the earthquake-magnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b -value. The Lesser Antilles Arc was chosen because of its along-strike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b -value is found using a Kolmogorov–Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b -values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b -value that cannot be explained by the uncertainties. Rather than obtaining a simple north–south b -value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b -value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b -value ‘bull's-eyes’ along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-22
    Description: Deviation of seismic surface waves from the great-circle between source and receiver is illustrated by the anomalies in the arrival angle, that is the difference between the observed backazimuth of the incident waves and the great-circle. Such arrival angle anomalies have been known for decades, but observations remain scattered. We present a systematic study of arrival angle anomalies of fundamental mode Rayleigh waves (20–100 s period interval) from 289 earthquakes and recorded by a broadband network LAPNET, located in northern Finland. These observations are compared with those of full waveform synthetic seismograms for the same events, calculated in a 3-D Earth and also compared with those of seismograms obtained by ambient noise correlation. The arrival angle anomalies for individual events are complex, and have significant variations with period. On average, the mean absolute deviation decreases from ~9° at 20 s period to ~3° at 100 s period. The synthetic seismograms show the same evolution, albeit with somewhat smaller deviations. While the arrival angle anomalies are fairly well simulated at long periods, the deviations at short periods are very poorly modelled, demonstrating the importance of the continuous improvement of global crustal models. At 20–30 s period, both event data and numerical simulations have strong multipathing, and relative amplitude changes between different waves will induced differences in deviations between very closely located events. The source mechanism has only limited influence on the deviations, demonstrating that they are directly linked to propagation effects, including near-field effects in the source area. This observation is confirmed by the comparison with seismic noise correlation records, that is where the surface waves correspond to those emitted by a point source at the surface, as the two types of observations are remarkably similar in the cases where earthquakes are located close to seismic stations. This agreement additionally confirms that the noise correlations capture the complex surface wave propagation.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-22
    Description: We analysed the ground deformation produced by the M w = 6.1 2014 January 26 and M w = 6.0 2014 February 3 Cephalonia earthquakes, western Greece. Campaign GPS measurements and RADARSAT-2 synthetic aperture radar (SAR) interferometry provide constraints on the overall deformation produced by the sequence. TerraSAR-X and COSMO-SkyMed SAR interferometry provide constraints on the second earthquake separately. Two permanent GPS stations captured the two coseismic offsets and show no pre- or post-seismic transients. Most of the deformation is concentrated in the Paliki peninsula which is consistent with the location of the seismicity and the damages. Both GPS and SAR interferometry indicate areas with large deformation gradients probably due to shallow effects. Given the limitations on the data and on the knowledge of the structure and rheology of the crust, we used a simple elastic model to fit the ground displacements. Although such model cannot fit all the detail of the deformation, it is expected to provide a robust estimate of the overall geometry and slip of the fault. The good data coverage in azimuth and distance contributes to the robustness of the model. The entire sequence is modelled with a strike slip fault dipping 70° east and cutting most of the brittle crust beneath Paliki, with an upper edge located at 2.5 km depth and a deeper edge at 8.5 km. This fault is oriented N14° which corresponds to the azimuth of the Cephalonia Transform Fault (CTF). The fit to the data is significantly improved by adding a secondary shallow strike-slip fault with low dip angle (30°) with a component of reverse faulting on that shallow fault. The modelling of the February 3 event indicates that the faulting is shallow in the north of Paliki, with a centroid depth of ~3.2 km. The fit is improved when a single planar fault is replaced by a bent fault dipping ~30° in the uppermost 2 km and ~70° below. The fault of the January 26 earthquake, inferred from the difference between the two above models, is located south and beneath the February 3 fault, with a centroid depth of ~6.4 km. We interpret the 2014 fault zone as an east segment of the CTF located ~7 km east of the main axis of the CTF, which location is constrained by the elastic modelling of the interseismic GPS velocities. The aftershock sequence is mostly located between the January 26 fault and the axis of the CTF. According to our analysis, the Paliki peninsula is partly dragged north with the Apulian platform with ~7 mm yr –1 of shear accommodated offshore to the west. During the last 30 yr three main sequences occurred along the CTF, in 1983, 2003 and 2014 breaking a large part of the fault, with a gap of 20–40 km left between Cephalonia and Lefkada.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-17
    Description: The electrical current density generated by the propagation of a seismic wave at the interface characterized by a drop in electrical, hydraulic or mechanical properties produces an electrical field of electrokinetic nature. This field can be measured remotely with a signal-to-noise ratio depending on the background noise and signal attenuation. The seismoelectric beamforming approach is an emerging imaging technique based on scanning a porous material using appropriately delayed seismic sources. The idea is to focus the hydromechanical energy on a regular spatial grid and measure the converted electric field remotely at each focus time. This method can be used to image heterogeneities with a high definition and to provide structural information to classical geophysical methods. A numerical experiment is performed to investigate the resolution of the seismoelectric beamforming approach with respect to the main wavelength of the seismic waves. The 2-D model consists of a fictitious water-filled bucket in which a cylindrical sandstone core sample is set up vertically. The hydrophones/seismic sources are located on a 50-cm diameter circle in the bucket and the seismic energy is focused on the grid points in order to scan the medium and determine the geometry of the porous plug using the output electric potential image. We observe that the resolution of the method is given by a density of eight scanning points per wavelength. Additional numerical tests were also performed to see the impact of a wrong velocity model upon the seismoelectric map displaying the heterogeneities of the material.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...