ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN34983 , Science Magazine (e-ISSN 1095-9203); 348; 6235; 670-671
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Within our own galaxy, we have seen that energetic particles engage in a complex interplay with the galactic environment and even drive many of its key characteristics (for more information, see the first white paper in this series). On cosmological scales, the energetic particles supplied by the jets of active galactic nuclei (AGN) are an important source of energy for the intracluster and intergalactic media, providing a mechanism for regulating star formation and black hole growth and cultivating galaxy evolution (AGN feedback). Gamma-ray burst (GRB) afterglows encode information about their circumburst environment, which has implications for massive stellar winds during previous epochs over the stellar lifecycle. As such, GRB afterglows provide a means for studying very high-redshift galaxies since GRBs can be detected even if their host galaxy cannot. It has even been suggest that GRB could be used to measure cosmological distance scales if they could be shown to be standard candles. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. Despite the enormous progress in particle-in-cell and magnetohydrodynamic simulations, we have yet to pinpoint the processes involved in jet formation and collimation and the conditions under which they can occur. For that matter, we have yet to identify the mechanism(s) through which the jet accelerates energetic particles is it the commonly invoked diffusive shock acceleration process or is another mechanism, such as magnetic reconnection, required? Do AGNs and GRBs accelerate hadrons, and if so, do they accelerate them to ultra-high energies and are there high-energy neutrinos associated with them? MeV gamma-ray astronomy, enabled by technological advances that will be realized in the coming decade, will provide a unique and indispensable perspective on the persistent mysteries of the energetic universe. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. Specifically, MeV astronomy will: 1. Determine whether AGNs accelerate CRs to ultra-high energies; 2. Provide the missing pieces for the physics of the GRB prompt emission; 3. Measure magnetization in cosmic accelerators and search for acceleration via reconnection.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66972
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-30
    Description: The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique ``Lobster-eye'' imaging soft X-ray optics that allow an approximately 1600-degrees-squared Field of View (FoV); a high sensitivity, 1-degree-squared FoV soft X-ray telescope; a 1-degree-squared FoV Infrared telescope with bandpass 0.6 to 3 microns; and a set of 8 NaI gamma-ray detectors. TAP's most exciting capability will be the observation of tens per year of X-ray and Infrared counterparts of gravitational waves (GWs) involving stellar-mass black holes and neutron stars detected by LIGO (Laser Interferometer Gravitational-Wave Observatory ) / Virgo / KAGRA (Kamioka (Japan) Gravitational Wave Detector) / LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA (Laser Interferometer Space Antenna) and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70871
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counter part of the binary neutron star merger GW170817.The bright, rapidly fading UV emission indicates a high mass (0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye 0.27). Combined with the x-ray limits, we favor an observer viewing angle of 30 away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra relativistic, highly collimated ejecta (a gamma-ray burst afterglow).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN67019 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 358; 6370; 1565-1570
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...