ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cloning, Molecular  (7)
  • American Association for the Advancement of Science (AAAS)  (7)
  • American Society of Hematology
  • PANGAEA
  • 2015-2019
  • 2000-2004  (2)
  • 1990-1994  (5)
  • 1945-1949
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (7)
  • American Society of Hematology
  • PANGAEA
Years
Year
  • 1
    Publication Date: 1991-09-23
    Description: The Rel-associated protein pp40 is functionally related to I kappa B, an inhibitor of the transcription factor NF-kappa B. Purified pp40 inhibits the DNA binding activity of the NF-kappa B protein complex (p50:p65 heterodimers), p50:c-Rel heteromers, and c-Rel homodimers. The sequence of the complementary DNA encoding pp40 revealed similarity to the gene encoding MAD-3, a protein with mammalian I kappa B-like activity. Protein sequencing of I kappa B purified from rabbit lung confirmed that MAD-3 encodes a protein similar to I kappa B. The sequence similarity between MAD-3 and pp40 includes a casein kinase II and consensus tyrosine phosphorylation site, as well as five repeats of a sequence found in the human erythrocyte protein ankyrin. These results suggest that rel-related transcription factors, which are capable of cytosolic to nuclear translocation, may be held in the cytosol by interaction with related cytoplasmic anchor molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, N -- Ghosh, S -- Simmons, D L -- Tempst, P -- Liou, H C -- Baltimore, D -- Bose, H R Jr -- CA09583/CA/NCI NIH HHS/ -- CA2616/CA/NCI NIH HHS/ -- CA33192/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Sep 13;253(5025):1268-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas, Austin 78712.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1891714" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Chick Embryo ; Cloning, Molecular ; DNA Probes ; Molecular Sequence Data ; NF-kappa B/*antagonists & inhibitors ; Oligonucleotide Probes ; Oncogene Proteins v-rel ; Open Reading Frames ; Phosphoproteins/*genetics/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors ; RNA, Messenger/genetics ; Retroviridae Proteins, Oncogenic/*antagonists & inhibitors ; Sequence Homology, Nucleic Acid ; Transcription Factors/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-05-03
    Description: The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Lu, M L -- Lo, S H -- Lin, S -- Butler, J A -- Druker, B J -- Roberts, T M -- An, Q -- Chen, L B -- GM 22289/GM/NIGMS NIH HHS/ -- GM 38318/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1708917" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Chick Embryo ; Cloning, Molecular ; Cytoskeletal Proteins/*chemistry/genetics/metabolism ; DNA/genetics ; Fluorescent Antibody Technique ; Immunoblotting ; *Microfilament Proteins ; Molecular Sequence Data ; Peptide Fragments/genetics ; Phosphotyrosine ; Protein-Tyrosine Kinases/genetics ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-07-05
    Description: Although neurotrophic factors were originally isolated on the basis of their ability to support the survival of neurons, these molecules are now thought to influence many aspects of the development and maintenance of the nervous system. Identifying the receptors for these neurotrophic factors should aid in identifying the cells on which these factors act and in understanding their precise mechanisms of action. A "tagged-ligand panning" procedure was used to clone a receptor for ciliary neurotrophic factor (CNTF). This receptor is expressed exclusively within the nervous system and skeletal muscle. The CNTF receptor has a structure unrelated to the receptors utilized by the nerve growth factor family of neurotrophic molecules, but instead is most homologous to the receptor for a cytokine, interleukin-6. This similarity suggestes that the CNTF receptor, like the interleukin-6 receptor, requires a second, signal-transducing component. In contrast to all known receptors, the CNTF receptor is anchored to cell membranes by a glycosyl-phosphatidylinositol linkage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Aldrich, T H -- Valenzuela, D M -- Wong, V V -- Furth, M E -- Squinto, S P -- Yancopoulos, G D -- New York, N.Y. -- Science. 1991 Jul 5;253(5015):59-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1648265" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Cell Line ; Cloning, Molecular ; Electrophoresis, Agar Gel ; Gene Expression ; Humans ; In Vitro Techniques ; Molecular Sequence Data ; Muscles/metabolism ; Nervous System/metabolism ; Neuroblastoma/metabolism ; Rats ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cell Surface/blood/*genetics ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-05-25
    Description: Tumor necrosis factor alpha and beta (TNF-alpha and TNF-beta) bind surface receptors on a variety of cell types to mediate a wide range of immunological responses, inflammatory reactions, and anti-tumor effects. A cDNA clone encoding an integral membrane protein of 461 amino acids was isolated from a human lung fibroblast library by direct expression screening with radiolabeled TNF-alpha. The encoded receptor was also able to bind TNF-beta. The predicted cysteine-rich extracellular domain has extensive sequence similarity with five proteins, including nerve growth factor receptor and a transcriptionally active open reading frame from Shope fibroma virus, and thus defines a family of receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, C A -- Davis, T -- Anderson, D -- Solam, L -- Beckmann, M P -- Jerzy, R -- Dower, S K -- Cosman, D -- Goodwin, R G -- New York, N.Y. -- Science. 1990 May 25;248(4958):1019-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Corporation, Seattle, WA 98101.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2160731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blotting, Northern ; Cloning, Molecular ; DNA/genetics ; Humans ; Membrane Proteins/genetics ; Molecular Sequence Data ; Multigene Family ; Receptors, Cell Surface/*genetics ; Receptors, Tumor Necrosis Factor ; Tumor Necrosis Factor-alpha/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-11-01
    Description: Functional analysis of a genome requires accurate gene structure information and a complete gene inventory. A dual experimental strategy was used to verify and correct the initial genome sequence annotation of the reference plant Arabidopsis. Sequencing full-length cDNAs and hybridizations using RNA populations from various tissues to a set of high-density oligonucleotide arrays spanning the entire genome allowed the accurate annotation of thousands of gene structures. We identified 5817 novel transcription units, including a substantial amount of antisense gene transcription, and 40 genes within the genetically defined centromeres. This approach resulted in completion of approximately 30% of the Arabidopsis ORFeome as a resource for global functional experimentation of the plant proteome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamada, Kayoko -- Lim, Jun -- Dale, Joseph M -- Chen, Huaming -- Shinn, Paul -- Palm, Curtis J -- Southwick, Audrey M -- Wu, Hank C -- Kim, Christopher -- Nguyen, Michelle -- Pham, Paul -- Cheuk, Rosa -- Karlin-Newmann, George -- Liu, Shirley X -- Lam, Bao -- Sakano, Hitomi -- Wu, Troy -- Yu, Guixia -- Miranda, Molly -- Quach, Hong L -- Tripp, Matthew -- Chang, Charlie H -- Lee, Jeong M -- Toriumi, Mitsue -- Chan, Marie M H -- Tang, Carolyn C -- Onodera, Courtney S -- Deng, Justine M -- Akiyama, Kenji -- Ansari, Yasser -- Arakawa, Takahiro -- Banh, Jenny -- Banno, Fumika -- Bowser, Leah -- Brooks, Shelise -- Carninci, Piero -- Chao, Qimin -- Choy, Nathan -- Enju, Akiko -- Goldsmith, Andrew D -- Gurjal, Mani -- Hansen, Nancy F -- Hayashizaki, Yoshihide -- Johnson-Hopson, Chanda -- Hsuan, Vickie W -- Iida, Kei -- Karnes, Meagan -- Khan, Shehnaz -- Koesema, Eric -- Ishida, Junko -- Jiang, Paul X -- Jones, Ted -- Kawai, Jun -- Kamiya, Asako -- Meyers, Cristina -- Nakajima, Maiko -- Narusaka, Mari -- Seki, Motoaki -- Sakurai, Tetsuya -- Satou, Masakazu -- Tamse, Racquel -- Vaysberg, Maria -- Wallender, Erika K -- Wong, Cecilia -- Yamamura, Yuki -- Yuan, Shiaulou -- Shinozaki, Kazuo -- Davis, Ronald W -- Theologis, Athanasios -- Ecker, Joseph R -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):842-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Gene Expression Center, Albany, CA 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593172" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Cloning, Molecular ; Computational Biology ; DNA, Complementary/genetics ; DNA, Intergenic ; Expressed Sequence Tags ; Gene Expression Profiling ; Genes, Plant ; *Genome, Plant ; Genomics ; Nucleic Acid Hybridization ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; RNA, Messenger/*genetics ; RNA, Plant/*genetics ; Reverse Transcriptase Polymerase Chain Reaction ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-12-06
    Description: We have developed a method for temporal and regional gene expression targeting (TARGET) in Drosophila and show the simultaneous spatial and temporal rescue of a memory defect. The transient expression of the rutabaga-encoded adenylyl cyclase in the mushroom bodies of the adult brain was necessary and sufficient to rescue the rutabaga memory deficit, which rules out a developmental brain defect in the etiology of this deficit and demonstrates an acute role for rutabaga in memory formation in these neurons. The TARGET system offers general utility in simultaneously addressing issues of when and where gene products are required.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGuire, Sean E -- Le, Phuong T -- Osborn, Alexander J -- Matsumoto, Kunihiro -- Davis, Ronald L -- GM63929/GM/NIGMS NIH HHS/ -- NS19904/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1765-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657498" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/*genetics/*metabolism ; Animals ; Animals, Genetically Modified ; Cloning, Molecular ; DNA-Binding Proteins ; Drosophila/genetics/growth & development/*physiology ; Drosophila Proteins/*genetics/*metabolism ; *Gene Expression ; Genotype ; Green Fluorescent Proteins ; Luminescent Proteins/genetics/metabolism ; Memory/*physiology ; Mushroom Bodies/*physiology ; Neuronal Plasticity ; Phenotype ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Temperature ; Transcription Factors/genetics/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-03-19
    Description: The alpha component of the receptor for ciliary neurotrophic factor (CNTF) differs from other known growth factor receptors in that it is anchored to cell membranes by a glycosylphosphatidylinositol linkage. One possible function of this type of linkage is to allow for the regulated release of this receptor component. Cell lines not normally responsive to CNTF responded to treatment with a combination of CNTF and a soluble form of the CNTF alpha receptor component. These findings not only demonstrate that the CNTF receptor alpha chain is a required component of the functional CNTF receptor complex but also reveal that it can function in soluble form as part of a heterodimeric ligand. Potential physiological roles for the soluble CNTF receptor are suggested by its presence in cerebrospinal fluid and by its release from skeletal muscle in response to peripheral nerve injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Aldrich, T H -- Ip, N Y -- Stahl, N -- Scherer, S -- Farruggella, T -- DiStefano, P S -- Curtis, R -- Panayotatos, N -- Gascan, H -- New York, N.Y. -- Science. 1993 Mar 19;259(5102):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7681218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects ; Cell Division/drug effects ; Cell Membrane/metabolism ; Ciliary Neurotrophic Factor ; Cloning, Molecular ; Gene Expression ; Glycosylphosphatidylinositols/metabolism ; Growth Inhibitors/pharmacology ; Hematopoietic Stem Cells/cytology/drug effects ; Humans ; Interleukin-6/pharmacology ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Mice ; Muscle Denervation ; Muscles/innervation/metabolism ; Nerve Tissue Proteins/*pharmacology ; Phosphatidylinositol Diacylglycerol-Lyase ; Phosphoric Diester Hydrolases/metabolism ; Phosphotyrosine ; RNA, Messenger/genetics ; Rats ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cell Surface/chemistry/*physiology ; Signal Transduction/physiology ; Tumor Cells, Cultured ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...