ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-04-28
    Description: Multiple death signals influence mitochondria during apoptosis, yet the critical initiating event for mitochondrial dysfunction in vivo has been unclear. tBID, the caspase-activated form of a "BH3-domain-only" BCL-2 family member, triggers the homooligomerization of "multidomain" conserved proapoptotic family members BAK or BAX, resulting in the release of cytochrome c from mitochondria. We find that cells lacking both Bax and Bak, but not cells lacking only one of these components, are completely resistant to tBID-induced cytochrome c release and apoptosis. Moreover, doubly deficient cells are resistant to multiple apoptotic stimuli that act through disruption of mitochondrial function: staurosporine, ultraviolet radiation, growth factor deprivation, etoposide, and the endoplasmic reticulum stress stimuli thapsigargin and tunicamycin. Thus, activation of a "multidomain" proapoptotic member, BAX or BAK, appears to be an essential gateway to mitochondrial dysfunction required for cell death in response to diverse stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, M C -- Zong, W X -- Cheng, E H -- Lindsten, T -- Panoutsakopoulou, V -- Ross, A J -- Roth, K A -- MacGregor, G R -- Thompson, C B -- Korsmeyer, S J -- 5T32AT09361/AT/NCCIH NIH HHS/ -- R01 HD036437-02/HD/NICHD NIH HHS/ -- R01 HD036437-03/HD/NICHD NIH HHS/ -- R01 HD036437-04/HD/NICHD NIH HHS/ -- R01 HD036437-05/HD/NICHD NIH HHS/ -- R01CA50239/CA/NCI NIH HHS/ -- R37CA4802/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Departments of Pathology and Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Antigens, CD95/immunology/physiology ; Apoptosis/*physiology ; BH3 Interacting Domain Death Agonist Protein ; Biopolymers ; Carrier Proteins/genetics/metabolism ; Cells, Cultured ; Cytochrome c Group/metabolism ; Endoplasmic Reticulum/metabolism ; Etoposide/pharmacology ; Hepatocytes/cytology/metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/genetics/*metabolism ; Mice ; Mitochondria/*metabolism ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/genetics/*metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Signal Transduction ; Staurosporine/pharmacology ; Transfection ; Ultraviolet Rays ; bcl-2 Homologous Antagonist-Killer Protein ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...