ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • Humans  (6)
  • Imaging, Three-Dimensional  (2)
  • Polymer and Materials Science
  • 2015-2019  (2)
  • 2005-2009  (5)
Collection
  • Articles  (7)
Years
Year
  • 1
    Publication Date: 2008-05-10
    Description: We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803040/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803040/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Wesley C -- Hillier, LaDeana W -- Marshall Graves, Jennifer A -- Birney, Ewan -- Ponting, Chris P -- Grutzner, Frank -- Belov, Katherine -- Miller, Webb -- Clarke, Laura -- Chinwalla, Asif T -- Yang, Shiaw-Pyng -- Heger, Andreas -- Locke, Devin P -- Miethke, Pat -- Waters, Paul D -- Veyrunes, Frederic -- Fulton, Lucinda -- Fulton, Bob -- Graves, Tina -- Wallis, John -- Puente, Xose S -- Lopez-Otin, Carlos -- Ordonez, Gonzalo R -- Eichler, Evan E -- Chen, Lin -- Cheng, Ze -- Deakin, Janine E -- Alsop, Amber -- Thompson, Katherine -- Kirby, Patrick -- Papenfuss, Anthony T -- Wakefield, Matthew J -- Olender, Tsviya -- Lancet, Doron -- Huttley, Gavin A -- Smit, Arian F A -- Pask, Andrew -- Temple-Smith, Peter -- Batzer, Mark A -- Walker, Jerilyn A -- Konkel, Miriam K -- Harris, Robert S -- Whittington, Camilla M -- Wong, Emily S W -- Gemmell, Neil J -- Buschiazzo, Emmanuel -- Vargas Jentzsch, Iris M -- Merkel, Angelika -- Schmitz, Juergen -- Zemann, Anja -- Churakov, Gennady -- Kriegs, Jan Ole -- Brosius, Juergen -- Murchison, Elizabeth P -- Sachidanandam, Ravi -- Smith, Carly -- Hannon, Gregory J -- Tsend-Ayush, Enkhjargal -- McMillan, Daniel -- Attenborough, Rosalind -- Rens, Willem -- Ferguson-Smith, Malcolm -- Lefevre, Christophe M -- Sharp, Julie A -- Nicholas, Kevin R -- Ray, David A -- Kube, Michael -- Reinhardt, Richard -- Pringle, Thomas H -- Taylor, James -- Jones, Russell C -- Nixon, Brett -- Dacheux, Jean-Louis -- Niwa, Hitoshi -- Sekita, Yoko -- Huang, Xiaoqiu -- Stark, Alexander -- Kheradpour, Pouya -- Kellis, Manolis -- Flicek, Paul -- Chen, Yuan -- Webber, Caleb -- Hardison, Ross -- Nelson, Joanne -- Hallsworth-Pepin, Kym -- Delehaunty, Kim -- Markovic, Chris -- Minx, Pat -- Feng, Yucheng -- Kremitzki, Colin -- Mitreva, Makedonka -- Glasscock, Jarret -- Wylie, Todd -- Wohldmann, Patricia -- Thiru, Prathapan -- Nhan, Michael N -- Pohl, Craig S -- Smith, Scott M -- Hou, Shunfeng -- Nefedov, Mikhail -- de Jong, Pieter J -- Renfree, Marilyn B -- Mardis, Elaine R -- Wilson, Richard K -- 062023/Wellcome Trust/United Kingdom -- HG002238/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-37/CA/NCI NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- R01HG02385/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2008 May 8;453(7192):175-83. doi: 10.1038/nature06936.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. wwarren@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18464734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Dentition ; *Evolution, Molecular ; Female ; Genome/*genetics ; Genomic Imprinting/genetics ; Humans ; Immunity/genetics ; Male ; Mammals/genetics ; MicroRNAs/genetics ; Milk Proteins/genetics ; Phylogeny ; Platypus/*genetics/immunology/physiology ; Receptors, Odorant/genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Reptiles/genetics ; Sequence Analysis, DNA ; Spermatozoa/metabolism ; Venoms/genetics ; Zona Pellucida/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-09
    Description: The unique structural motifs and self-recognition properties of DNA can be exploited to generate self-assembling DNA nanostructures of specific shapes using a 'bottom-up' approach. Several assembly strategies have been developed for building complex three-dimensional (3D) DNA nanostructures. Recently, the DNA 'origami' method was used to build two-dimensional addressable DNA structures of arbitrary shape that can be used as platforms to arrange nanomaterials with high precision and specificity. A long-term goal of this field has been to construct fully addressable 3D DNA nanostructures. Here we extend the DNA origami method into three dimensions by creating an addressable DNA box 42 x 36 x 36 nm(3) in size that can be opened in the presence of externally supplied DNA 'keys'. We thoroughly characterize the structure of this DNA box using cryogenic transmission electron microscopy, small-angle X-ray scattering and atomic force microscopy, and use fluorescence resonance energy transfer to optically monitor the opening of the lid. Controlled access to the interior compartment of this DNA nanocontainer could yield several interesting applications, for example as a logic sensor for multiple-sequence signals or for the controlled release of nanocargos.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersen, Ebbe S -- Dong, Mingdong -- Nielsen, Morten M -- Jahn, Kasper -- Subramani, Ramesh -- Mamdouh, Wael -- Golas, Monika M -- Sander, Bjoern -- Stark, Holger -- Oliveira, Cristiano L P -- Pedersen, Jan Skov -- Birkedal, Victoria -- Besenbacher, Flemming -- Gothelf, Kurt V -- Kjems, Jorgen -- England -- Nature. 2009 May 7;459(7243):73-6. doi: 10.1038/nature07971.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Danish National Research Foundation: Centre for DNA Nanotechnology.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424153" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; DNA/*chemistry ; Imaging, Three-Dimensional ; Microscopy, Atomic Force ; Nanostructures/*chemistry ; *Nucleic Acid Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-03-20
    Description: The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintzman, Nathaniel D -- Hon, Gary C -- Hawkins, R David -- Kheradpour, Pouya -- Stark, Alexander -- Harp, Lindsey F -- Ye, Zhen -- Lee, Leonard K -- Stuart, Rhona K -- Ching, Christina W -- Ching, Keith A -- Antosiewicz-Bourget, Jessica E -- Liu, Hui -- Zhang, Xinmin -- Green, Roland D -- Lobanenkov, Victor V -- Stewart, Ron -- Thomson, James A -- Crawford, Gregory E -- Kellis, Manolis -- Ren, Bing -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- U01 HG003151/HG/NHGRI NIH HHS/ -- U01 HG003151-01/HG/NHGRI NIH HHS/ -- U01 HG003151-01S1/HG/NHGRI NIH HHS/ -- U01 HG003151-02/HG/NHGRI NIH HHS/ -- U01 HG003151-03/HG/NHGRI NIH HHS/ -- U01 HG003151-03S1/HG/NHGRI NIH HHS/ -- U01 HG003151-03S2/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2009 May 7;459(7243):108-12. doi: 10.1038/nature07829. Epub 2009 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295514" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; *Cell Physiological Phenomena ; Chromatin/genetics ; *Gene Expression Regulation ; Genome, Human/genetics ; HeLa Cells ; Histones/*metabolism ; Humans ; K562 Cells ; Promoter Regions, Genetic/genetics ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-03-17
    Description: Once all chromosomes are connected to the mitotic spindle (bioriented), anaphase is initiated by the protein ubiquitylation activity of the anaphase-promoting complex/cyclosome (APC/C) and its coactivator Cdc20 (APC/C(Cdc20)). Before chromosome biorientation, anaphase is delayed by a mitotic checkpoint complex (MCC) that inhibits APC/C(Cdc20). We used single-particle electron microscopy to obtain three-dimensional models of human APC/C in various functional states: bound to MCC, to Cdc20, or to neither (apo-APC/C). These experiments revealed that MCC associates with the Cdc20 binding site on APC/C, locks the otherwise flexible APC/C in a "closed" state, and prevents binding and ubiquitylation of a wide range of different APC/C substrates. These observations clarify the structural basis for the inhibition of APC/C by spindle checkpoint proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989460/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989460/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herzog, Franz -- Primorac, Ivana -- Dube, Prakash -- Lenart, Peter -- Sander, Bjorn -- Mechtler, Karl -- Stark, Holger -- Peters, Jan-Michael -- F 3407/Austrian Science Fund FWF/Austria -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1477-81. doi: 10.1126/science.1163300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286556" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Cdc20 Proteins ; Cell Cycle Proteins/chemistry/metabolism ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Microscopy, Electron ; *Mitosis ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Spindle Apparatus/*metabolism ; Ubiquitin-Conjugating Enzymes/chemistry/metabolism ; Ubiquitin-Protein Ligase Complexes/*chemistry/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-15
    Description: Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-alpha (ERalpha) function and breast cancer prognosis. Here we show that PR is not merely an ERalpha-induced gene target, but is also an ERalpha-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERalpha to direct ERalpha chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERalpha(+) cell line xenografts and primary ERalpha(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERalpha antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERalpha(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERalpha chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650274/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650274/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohammed, Hisham -- Russell, I Alasdair -- Stark, Rory -- Rueda, Oscar M -- Hickey, Theresa E -- Tarulli, Gerard A -- Serandour, Aurelien A -- Birrell, Stephen N -- Bruna, Alejandra -- Saadi, Amel -- Menon, Suraj -- Hadfield, James -- Pugh, Michelle -- Raj, Ganesh V -- Brown, Gordon D -- D'Santos, Clive -- Robinson, Jessica L L -- Silva, Grace -- Launchbury, Rosalind -- Perou, Charles M -- Stingl, John -- Caldas, Carlos -- Tilley, Wayne D -- Carroll, Jason S -- 242664/European Research Council/International -- 5P30CA142543/CA/NCI NIH HHS/ -- A10178/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jul 16;523(7560):313-7. doi: 10.1038/nature14583. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK. ; Dame Roma Mitchell Cancer Research Laboratories and the Adelaide Prostate Cancer Research Centre, School of Medicine, Hanson Institute Building, University of Adelaide, Adelaide, South Australia 5005, Australia. ; Department of Urology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA. ; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB7295, Chapel Hill, North Carolina 27599, USA. ; 1] Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK [2] Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK [3] Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/drug therapy/*genetics/*metabolism/pathology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chromatin/drug effects/genetics/metabolism ; DNA Copy Number Variations/genetics ; Disease Progression ; Estrogen Receptor alpha/antagonists & inhibitors/*metabolism ; Estrogens/metabolism/pharmacology ; Female ; *Gene Expression Regulation, Neoplastic/drug effects ; Humans ; Ligands ; Mice ; Progesterone/metabolism/pharmacology ; Protein Binding/drug effects ; Receptors, Progesterone/genetics/*metabolism ; Transcription, Genetic/drug effects ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-03-22
    Description: Pattern separation, the process of transforming similar representations or memories into highly dissimilar, nonoverlapping representations, is a key component of many functions ascribed to the hippocampus. Computational models have stressed the role of the hippocampus and, in particular, the dentate gyrus and its projections into the CA3 subregion in pattern separation. We used high-resolution (1.5-millimeter isotropic voxels) functional magnetic resonance imaging to measure brain activity during incidental memory encoding. Although activity consistent with a bias toward pattern completion was observed in CA1, the subiculum, and the entorhinal and parahippocampal cortices, activity consistent with a strong bias toward pattern separation was observed in, and limited to, the CA3/dentate gyrus. These results provide compelling evidence of a key role of the human CA3/dentate gyrus in pattern separation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakker, Arnold -- Kirwan, C Brock -- Miller, Michael -- Stark, Craig E L -- P41 RR15241-01A1/RR/NCRR NIH HHS/ -- R01 EB000975/EB/NIBIB NIH HHS/ -- R01 EB000975-04/EB/NIBIB NIH HHS/ -- R01 EB008171/EB/NIBIB NIH HHS/ -- R01 EB008171-01A1/EB/NIBIB NIH HHS/ -- R01 EB00975-01/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 21;319(5870):1640-2. doi: 10.1126/science.1152882.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18356518" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Analysis of Variance ; Brain Mapping ; Dentate Gyrus/*physiology ; Entorhinal Cortex/physiology ; Female ; Hippocampus/*physiology ; Humans ; Magnetic Resonance Imaging ; Male ; Memory/*physiology ; Parahippocampal Gyrus/physiology ; *Pattern Recognition, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-26
    Description: The U4/U6.U5 triple small nuclear ribonucleoprotein (tri-snRNP) is a major spliceosome building block. We obtained a three-dimensional structure of the 1.8-megadalton human tri-snRNP at a resolution of 7 angstroms using single-particle cryo-electron microscopy (cryo-EM). We fit all known high-resolution structures of tri-snRNP components into the EM density map and validated them by protein cross-linking. Our model reveals how the spatial organization of Brr2 RNA helicase prevents premature U4/U6 RNA unwinding in isolated human tri-snRNPs and how the ubiquitin C-terminal hydrolase-like protein Sad1 likely tethers the helicase Brr2 to its preactivation position. Comparison of our model with cryo-EM three-dimensional structures of the Saccharomyces cerevisiae tri-snRNP and Schizosaccharomyces pombe spliceosome indicates that Brr2 undergoes a marked conformational change during spliceosome activation, and that the scaffolding protein Prp8 is also rearranged to accommodate the spliceosome's catalytic RNA network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agafonov, Dmitry E -- Kastner, Berthold -- Dybkov, Olexandr -- Hofele, Romina V -- Liu, Wen-Ti -- Urlaub, Henning -- Luhrmann, Reinhard -- Stark, Holger -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1416-20. doi: 10.1126/science.aad2085. Epub 2016 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. ; Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Gottingen, D-37075 Gottingen, Germany. ; Department of 3D Electron Cryomicroscopy, Georg-August Universitat Gottingen, D-37077 Gottingen, Germany. Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. ; Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Gottingen, D-37075 Gottingen, Germany. reinhard.luehrmann@mpi-bpc.mpg.de hstark1@gwdg.de henning.urlaub@mpibpc.mpg.de. ; Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. reinhard.luehrmann@mpi-bpc.mpg.de hstark1@gwdg.de henning.urlaub@mpibpc.mpg.de. ; Department of 3D Electron Cryomicroscopy, Georg-August Universitat Gottingen, D-37077 Gottingen, Germany. Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany. reinhard.luehrmann@mpi-bpc.mpg.de hstark1@gwdg.de henning.urlaub@mpibpc.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912367" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; DEAD-box RNA Helicases/chemistry ; Enzyme Activation ; HeLa Cells ; Humans ; Models, Molecular ; Peptide Elongation Factors/chemistry ; Protein Conformation ; RNA Helicases/chemistry ; RNA-Binding Proteins/chemistry ; Ribonucleoprotein, U4-U6 Small Nuclear/*chemistry ; Ribonucleoprotein, U5 Small Nuclear/*chemistry ; Ribonucleoproteins, Small Nuclear/chemistry ; Saccharomyces cerevisiae Proteins/chemistry ; Schizosaccharomyces/metabolism ; Ubiquitin Thiolesterase/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...