ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (15)
  • Space Sciences (General)  (12)
  • Astronautics (General)  (3)
  • 2015-2019  (14)
  • 2005-2009  (1)
  • 1
    Publication Date: 2019-07-13
    Description: As the durations and distances involved in human exploration missions increase, the logistics associated with the repair and maintenance becomes more challenging. Whereas the operation of the International Space Station (ISS) depends upon regular resupply from the Earth, this paradigm may not be feasible for future missions. Longer mission durations result in higher probabilities of component failures as well as higher uncertainty regarding which components may fail, and longer distances from Earth increase the cost of resupply as well as the speed at which the crew can abort to Earth in the event of an emergency. As such, mission development efforts must take into account the logistics requirements associated with maintenance and spares. Accurate prediction of the spare parts demand for a given mission plan and how that demand changes as a result of changes to the system architecture enables full consideration of the lifecycle cost associated with different options. In this paper, we utilize a range of analysis techniques - Monte Carlo, semi-Markov, binomial, and heuristic - to examine the relationship between the mass of spares and probability of loss of function related to the Carbon Dioxide Removal System (CRS) for a notional, simplified mission profile. The Exploration Maintainability Analysis Tool (EMAT), developed at NASA Langley Research Center, is utilized for the Monte Carlo analysis. We discuss the implications of these results and the features and drawbacks of each method. In particular, we identify the limitations of heuristic methods for logistics analysis, and the additional insights provided by more in-depth techniques. We discuss the potential impact of system complexity on each technique, as well as their respective abilities to examine dynamic events. This work is the first step in an effort that will quantitatively examine how well these techniques handle increasingly more complex systems by gradually expanding the system boundary.
    Keywords: Astronautics (General)
    Type: ICES-2015-288 , NF1676L-20870 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Interface Region Imaging Spectrograph (IRIS), launched in the summer of 2013, is designed specifically to observe and investigate the transition region and adjacent layers of the solar atmosphere, obtaining images in high spatial, temporal, and spectral resolution. Our particular work is focused on the evolution of inter-moss loops, which have been detected in the lower corona by the Atmospheric Imaging Assembly (AIA) and the High-Resolution Coronal Imager (Hi- C), but are known to have foot points below the transition region. With the high-resolution capabilities of IRIS and its Si IV pass band, which measures activity in the upper chromosphere, we can study these magnetic loops in detail and compare their characteristic length and time scales to those obtained from several AIA image sets, particularly the 171, 193, and 211 pass bands. By comparing the results between these four data sets, one can potentially establish a measure of the ionization equilibrium for the location in question. To explore this idea, we found a large, sit-and-stare observation within the IRIS database that fit our specifications. This data set contained a number of well-defined inter-moss loops (by visual inspection) with a cadence less than or equal to that of AIA (approximately 12 seconds). This particular data set was recorded on October 23, 2013 at 07:09:30, lasting for 3219 seconds with a field of view of 120.6 by 128.1 arcseconds, centered on -53.9 by 59.1 arcseconds from disk center. For ease of comparison, the AIA data has been interpolated to match the IRIS cadence and resolution. In the main portion of the poster, we demonstrate the detection of events, the information collected, and the immediate results to the right, showing the progress of an event with green as the start, blue as the peak, and red as the end. Below here, we demonstrate how pixels are combined to form groups. The 3D results are shown to the right
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN28837 , Royal Astronomical Society Meeting; Jan 08, 2016; London; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The 23 km-diameter, ca. 24 Ma Haughton Dome impact structure in the Canadian Arctic on Devon Island, Nunavut (89deg41W, 75deg22N) occurred within a two layered target composed of a shallowly-dipping ~1700 m thick succession of Paleozoic limestones and evaporates overlying ca.1.9 Ga high grade gneisses [1, 2]. Within the structure a well preserved impact melt bearing breccia unit contains a variety of shocked clasts from the pre-impact sediments and basement gneisses [3]. Due to their high level of preservation a variety of studies have been undertaken on the clast population of the melt bearing breccia, including characterization of shock within the accessory minerals of the basement lithologies [4, 5]. This study presents high resolution electron backscatter diffraction (EBSD) microstructural data for zircon and monazite from historic samples of the basement gneiss, in which bulk shock pressures have been previously constrained based on major phases [4, 6]. Shocked zircon and monazite grains have been investigated from shock stage 1b (sample 72110), 2 (7273) and 3 (7192, Dig-9) [4, 6]. At lower shock levels zircon displays planar microstructures consistent with mechanical shock {112} twin formation [7] and deviatoric transformation to the high pressure polymorph reidite [8]. Zircon grains from shock stage three show a more chaotic microstructure with multiple orientations of tightly spaced sets of reidite that are variably recrystallized to zircon neoblasts. Monazite from lower shock stages contains a number of mechanical twin orientations that are indicative of shock deformation [9]. At higher shock pressures a lath like structure of interlocking twin orientations has been identified. This microstructure is suggestive of a reversion transformation from a high pressure polymorph [10] and is the first evidence for the transformation of monazite during shock.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN60816 , Annual Meeting Geological Society of America; Nov 04, 2018 - Nov 07, 2018; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: In magmatic systems, the availabil- ity of excess oxygen that can react with multivalent elements such as Fe and S to change their charge (oxi- dation of Fe2+ to Fe3+ or reduction of S6+ to S2-) is characterized by a parameter called the oxygen fugacity (O2). The O2 controls the availability of these ions and consequently the mineralsand the chemistry of those mineralsthat crystallize from a melt. Mineral mode and chemistry control how magmas evolve, and given that O2 varies by many orders of magnitude on different planets [2], understanding the O2 of a mag- ma is critical to relating observations about a magma to the body on which it forms. The mineral apatite was long thought to only incor- porate S6+ in a coupled substitution for P5+, but recently natural apatites with S2- were identified in lunar mare basalts that crystallized at low O2 [3]. This suggests that apatite can be used as a monitor of O2 assuming that one can 1) measure S6+/S (S6+ over total sulfur), and 2) determine some partitioning relationship be- tween apatite and melt for S6+ and S2-. The most common method for measuring S6+/S is X-ray Absorption Near-Edge Spectroscopy (XANES), but given the limited access to synchrotron facilities, it is wise to explore the potential of other methods for measuring S6+/S. One such possible method relies upon the shift in energy of the sulfur K- peak on the electron microprobe. However, apatite is subject to well-documented beam damage [4, 5], so it is neces- sary to evaluate under what conditions can reliable S6+ ethod.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN65746 , Lunar and Planetary Science Conference (LPSC); Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Space Physics Archive Search and Extract Consortium has developed and implemented the SPASE Data Model that provides a common language for registering a wide range of Heliophysics data and other products. The Data Model enables discovery and access tools such that any researcher can obtain data easily, thereby facilitating research, including on space weather. The Data Model includes descriptions of Simulation Models and Numerical Output, pioneered by the Integrated Medium for Planetary Exploration (IMPEx) group in Europe, and subsequently adopted by the Community Coordinated Modeling Center (CCMC). The SPASE group intends to register all relevant Heliophysics data resources, including space-, ground-, and model-based. Substantial progress has been made, especially for space-based observational data and associated observatories, instruments, and display data. Legacy product registrations and access go back more than 50 years. Real-time data will be included. The National Aeronautics and Space Administration (NASA) portion of the SPASE group has funding that assures continuity in the upkeep of the Data Model and aids with adding new products. Tools are being developed for making and editing data descriptions. Digital Object Identifiers (DOIs) for Data Products can now be included in the descriptions. The data access that SPASE facilitates is becoming more uniform, and work is progressing on Web Service access via a standard Application Programming Interface. The SPASE Data Model is stable; changes over the past 9 years were additions of terms and capabilities that are backward compatible. This paper provides a summary of the history, structure, use, and future of the SPASE Data Model.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN65482 , Space Weather (ISSN 1539-4956) (e-ISSN 1542-7390); 16; 12; 1899-1911
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Solar active regions (ARs) contain the brightest and hottest coronal EUV (Extreme Ultra-Violet) loops - the core of an AR is typically the brightest structure inside the AR. In the present work we report fine-scale transient brightenings and flows in the coolest loops (the counterpart of chromospheric arch filament systems long observed in H-alpha filtergrams of bipolar emerging flux regions) seen in the core of an AR observed in 172 angstroms by Hi-C2.1 (High Resolution Coronal Imager, version 2.1). Some of these are rooted, at one of their feet, in mixed-polarity field in the photosphere. We complement the 5-min Hi-C2.1 data with SDO/AIA/HMI (Solar Dynamics Observatory / Atmospheric Imaging Assembly / Helioseismic and Magnetic Imager) and IRIS SJ (Interface Region Imaging Spectrograph Slit-Jaw) images and spectral data, and examine fine-scale events, flows and their photospheric magnetic field. We find counter streaming flows in the arch filament system, similar to that long observed in filaments. There are scattered fine-scale brightening events. Most, if not all, of these brightenings are at sites of converging opposite-polarity magnetic flux (implying flux cancellation, sometimes resulting from flux emergence). The fine-scale flows stem from some of the brightenings. Flux cancellation at these sites apparently results in fine-scale explosions that drive the counter streaming flows. In the IRIS spectra, we look for evidence of upflows from brightenings at ends of loops of the arch filament system.
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN63874 , American Geophysical Union Fall Meeting (AGU 2018); Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Computational modeling of the erosion of polymers caused by atomic oxygen in low Earth orbit (LEO) is useful for determining areas of concern for spacecraft environment durability. Successful modeling requires that the characteristics of the environment such as atomic oxygen energy distribution, flux, and angular distribution be properly represented in the model. Thus whether the atomic oxygen is arriving normal to or inclined to a surface and whether it arrives in a consistent direction or is sweeping across the surface such as in the case of polymeric solar array blankets is important to determine durability. When atomic oxygen impacts a polymer surface it can react removing a certain volume per incident atom (called the erosion yield), recombine, or be ejected as an active oxygen atom to potentially either react with other polymer atoms or exit into space. Scattered atoms can also have a lower energy as a result of partial or total thermal accommodation. Many solutions to polymer durability in LEO involve protective thin films of metal oxides such as SiO2 to prevent atomic oxygen erosion. Such protective films also have their own interaction characteristics. A Monte Carlo computational model has been developed which takes into account the various types of atomic oxygen arrival and how it reacts with a representative polymer (polyimide Kapton H) and how it reacts at defect sites in an oxide protective coating, such as SiO2 on that polymer. Although this model was initially intended to determine atomic oxygen erosion behavior at defect sites for the International Space Station solar arrays, it has been used to predict atomic oxygen erosion or oxidation behavior on many other spacecraft components including erosion of polymeric joints, durability of solar array blanket box covers, and scattering of atomic oxygen into telescopes and microwave cavities where oxidation of critical component surfaces can take place. The computational model is a two dimensional model which has the capability to tune the interactions of how the atomic oxygen reacts, scatters, or recombines on polymer or nonreactive surfaces. In addition to the specification of atomic oxygen arrival details, a total of 15 atomic oxygen interaction parameters have been identified as necessary to properly simulate observed interactions and resulting polymer erosion that have been observed in LEO. The tuning of the Monte Carlo model has been accomplished by adjusting interaction parameters so the erosion patterns produced by the model match those from several actual LEO space experiments. Surface texturing in LEO can also be predicted by the model. Such comparison of space tests with ground laboratory experiments have enabled confidence in ground laboratory lifetime prediction of protected polymers. Results of Monte Carlo tuning, examples of surface texturing and undercutting erosion prediction, and several examples of how the model can be used to predict other LEO and Mars orbital space results are presented.
    Keywords: Space Sciences (General)
    Type: GRC-E-DAA-TN40019 , Applied Space Environments Conference (ASCE 2017): Measurements, Models, Testing, and Tools; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: Under a changing technological and economic environment, there is growing interest in implementing future NASA Earth Science missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: Which type of constellations should be chosen? How many spacecraft should be included in the constellation? Which design has the best costrisk value? This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI and formulating Trade-space Search Requests for the Trade-space Search Iterator, which in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules generates multiple potential architectures and their associated characteristics. UI will include Graphical, Command Line and Application Programmer Interfaces to respond to the demands of various levels of users expertise. Science inputs are grouped into various mission concepts, satellite specifications, and payload specifications, while science outputs are grouped into several types of metrics - spatial, temporal, angular and radiometric. Orbit Coverage leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data that are passed to Reduction Metrics. Then, for each architecture design, Cost Risk will provide estimates of the cost and life cycle cost as well as technical and cost risk of the proposed mission. Additionally, the Knowledge Base module is a centralized store of structured data readable by humans and machines. It will support both TAT-C analysis when composing new mission concepts from existing model inputs, and TAT-C exploration when discovering new mission concepts by querying previous results.
    Keywords: Astronautics (General)
    Type: AIST-14-0053 - ESTF16 , GSFC-E-DAA-TN33046 , Earth Science Technology Forum (ESTF2016); Jun 14, 2016 - Jun 16, 2016; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-22
    Description: Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The Knowledge Base supports both analysis and exploration, and the current GUI prototype automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost.
    Keywords: Astronautics (General)
    Type: GSFC-E-DAA-TN37927 , American Geophysical Union (AGU); Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-03
    Description: Mars' atmosphere typically supports dust aerosol with an effective radius near 1.5 m, varying from ~1 m during low dust times near northern summer solstice to ~2 m during higher dust times in southern spring and summer. After global dust events, size variations outside this range have not previously been observed. We report on imaging and spectral observations by the Curiosity rover through the 2018 global dust event. These observations show that the dust effective radius was seasonally normal prior to the local onset of increased opacity, increased rapidly above 4 m with increasing opacity, remained above 3 m over a period of ~50 Martian solar days, then returned to seasonal values before the opacity did so. This demonstrates lifting and regionalscale transport of a dust population ~3 times the size of typical dust aerosol.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN76682 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 46; 16; 9448-9456
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...