ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-06-01
    Description: Daily variations in Australian rainfall and surface temperature associated with the Southern Hemisphere annular mode (SAM) are documented using observations for the period 1979–2005. The high index polarity of the SAM is characterized by a poleward contraction of the midlatitude westerlies. During winter, the high index polarity of the SAM is associated with decreased daily rainfall over southeast and southwest Australia, but during summer it is associated with increased daily rainfall on the southern east coast of Australia and decreased rainfall in western Tasmania. Variations in the SAM explain up to ∼15% of the weekly rainfall variance in these regions, which is comparable to the variance accounted for by the El Niño–Southern Oscillation, especially during winter. The most widespread temperature anomalies associated with the SAM occur during the spring and summer seasons, when the high index polarity of the SAM is associated with anomalously low maximum temperature over most of central/eastern subtropical Australia. The regions of decreased maximum temperature are also associated with increased rainfall. Implications for recent trends in Australian rainfall and temperature are discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-15
    Description: The authors provide a detailed examination of observed ocean–atmosphere interaction in the Southern Hemisphere (SH). Focus is placed on the observed relationships between variability in SH extratropical sea surface temperature (SST) anomalies, the Southern Annular Mode (SAM), and the El Niño–Southern Oscillation (ENSO). Results are examined separately for the warm (November–April) and cold (May–October) seasons and for monthly and weekly time scales. It is shown that the signatures of the SAM and ENSO in the SH SST field vary as a function of season, both in terms of their amplitudes and structures. The role of surface turbulent and Ekman heat fluxes in driving seasonal variations in the SAM- and ENSO-related SST anomalies is investigated. Analyses of weekly data reveal that variability in the SAM tends to precede anomalies in the SST field by ∼1 week, and that the e-folding time scale of the SAM-related SST field anomalies is at least 4 months. The persistence of the SAM-related SST anomalies is consistent with the passive thermal response of the Southern Ocean to variations in the SAM, and seasonal variations in the persistence of the SAM-related SST anomalies are consistent with the seasonal cycle in the depth of the ocean mixed layer.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-15
    Description: Global-mean surface temperature is affected by both natural variability and anthropogenic forcing. This study is concerned with identifying and removing from global-mean temperatures the signatures of natural climate variability over the period January 1900–March 2009. A series of simple, physically based methodologies are developed and applied to isolate the climate impacts of three known sources of natural variability: the El Niño–Southern Oscillation (ENSO), variations in the advection of marine air masses over the high-latitude continents during winter, and aerosols injected into the stratosphere by explosive volcanic eruptions. After the effects of ENSO and high-latitude temperature advection are removed from the global-mean temperature record, the signatures of volcanic eruptions and changes in instrumentation become more clearly apparent. After the volcanic eruptions are subsequently filtered from the record, the residual time series reveals a nearly monotonic global warming pattern since ∼1950. The results also reveal coupling between the land and ocean areas on the interannual time scale that transcends the effects of ENSO and volcanic eruptions. Globally averaged land and ocean temperatures are most strongly correlated when ocean leads land by ∼2–3 months. These coupled fluctuations exhibit a complicated spatial signature with largest-amplitude sea surface temperature perturbations over the Atlantic Ocean.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-01-15
    Description: There is increasing evidence indicating that the climate response to variations in the El Niño–Southern Oscillation (ENSO) includes not only thermally forced zonal wind anomalies in the subtropics but also eddy-driven zonal wind anomalies that extend into the mid–high latitudes of both hemispheres. In this study, new insights into the observed seasonally varying signature of ENSO in the extratropical zonal-mean circulation are provided and the associated linkages with the dominant patterns of extratropical variability are examined. The zonal-mean extratropical atmospheric response to ENSO is characterized by two principal features: an equivalent barotropic dipole in the Southern Hemisphere (SH) zonal-mean zonal flow with centers of action located near ∼40° and ∼60° during austral summer, and a weaker, but analogous, dipole in the Northern Hemisphere (NH) with centers of action located near ∼25° and ∼45° during early and late boreal winter. Both structures are accompanied by eddy momentum flux anomalies that exhibit a remarkable degree of hemispheric symmetry. In the SH, the extratropical signature of ENSO projects strongly onto the primary mode of large-scale variability, the southern annular mode (SAM). During the austral summer, roughly 25% of the temporal variability in the SAM is linearly related to fluctuations in the ENSO cycle. An analogous relationship is not observed in association with the principal mode of climate variability in the NH, the northern annular mode (NAM). It is argued that the seasonally varying impact of ENSO on the extratropical circulation is consistent with the impact of the thermally forced subtropical wind anomalies on the dissipation of equatorward-propagating wave activity at subtropical latitudes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-04-15
    Description: The long-term, global-mean cooling of the lower stratosphere stems from two downward steps in temperature, both of which are coincident with the cessation of transient warming after the volcanic eruptions of El Chichón and Mount Pinatubo. Previous attribution studies reveal that the long-term cooling is linked to ozone trends, and modeling studies driven by a range of known forcings suggest that the steps reflect the superposition of the long-term cooling with transient variability in upwelling longwave radiation from the troposphere. However, the long-term cooling of the lower stratosphere is evident at all latitudes despite the fact that chemical ozone losses are thought to be greatest at middle and polar latitudes. Further, the ozone concentrations used in such studies are based on either 1) smooth mathematical functions fit to sparsely sampled observations that are unavailable during postvolcanic periods or 2) calculations by a coupled chemistry–climate model. Here the authors provide observational analyses that yield new insight into three key aspects of recent stratospheric climate change. First, evidence is provided that shows the unusual steplike behavior of global-mean stratospheric temperatures is dependent not only upon the trend but also on the temporal variability in global-mean ozone immediately following volcanic eruptions. Second, the authors argue that the warming/cooling pattern in global-mean temperatures following major volcanic eruptions is consistent with the competing radiative and chemical effects of volcanic eruptions on stratospheric temperature and ozone. Third, it is revealed that the contrasting latitudinal structures of recent stratospheric temperature and ozone trends are consistent with large-scale increases in the stratospheric overturning Brewer–Dobson circulation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-08-01
    Description: Climate change in the Southern Hemisphere (SH) polar stratosphere is associated with substantial changes in the atmospheric circulation that extend to the earth’s surface. The mechanisms that drive the changes in the SH troposphere are not fully understood, but most previous hypotheses have focused on the role of atmospheric dynamics rather than that of radiation. This study quantifies the radiative response of temperatures in the SH polar troposphere to the forcing from long-term temperature and ozone trends in the SH polar stratosphere. A novel methodology is employed that explicitly neglects changes in tropospheric dynamics and hence isolates the component of the tropospheric temperature response that is radiatively driven by the overlying stratospheric trends. The results reveal that both the amplitude and seasonality of the observed cooling of the middle and upper SH polar troposphere over the past few decades are consistent with a reduction in downwelling longwave radiation induced by cooling in the SH polar stratosphere. The results are compared with analogous calculations for trends in the Northern Hemisphere (NH) polar stratosphere. Both the observations and radiative calculations imply that the comparatively weak trends in the NH polar stratosphere have not played a central role in driving NH tropospheric climate change. Overall, the results suggest that radiative processes play a key role in coupling the large trends in SH polar stratospheric temperatures to tropospheric levels. The tropospheric radiative temperature response documented here could be important for triggering the changes in internal tropospheric dynamics associated with stratosphere–troposphere coupling.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-11-15
    Description: The global structure of recent stratospheric climate trends is examined in radiosonde data. In contrast to conclusions published in previous assessments of stratospheric temperature trends, it is demonstrated that in the annual mean the tropical stratosphere has cooled substantially over the past few decades. The cooling of the tropical stratosphere is apparent in both nighttime and adjusted radiosonde data, and seems to be robust to changes in radiosonde instrumentation. The meridional structure of the annual-mean stratospheric trends is not consistent with our current understanding of radiative transfer and constituent trends but is consistent with increased upwelling in the tropical stratosphere. The annual-mean cooling of the tropical stratosphere is juxtaposed against seasonally varying trends in the extratropical stratosphere dominated by the well-known springtime cooling at polar latitudes. The polar stratospheric trends are accompanied by similarly signed trends at tropospheric levels in the Southern Hemisphere but not in the Northern Hemisphere.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-05-01
    Description: Milankovitch proposed that variations in the earth’s orbit cause climate variability through a local thermodynamic response to changes in insolation. This hypothesis is tested by examining variability in an atmospheric general circulation model coupled to an ocean mixed layer model subjected to the orbital forcing of the past 165 000 yr. During Northern Hemisphere summer, the model’s response conforms to Milankovitch’s hypothesis, with high (low) insolation generating warm (cold) temperatures throughout the hemisphere. However, during Northern Hemisphere winter, the climate variations stemming from orbital forcing cannot be solely understood as a local thermodynamic response to radiation anomalies. Instead, orbital forcing perturbs the atmospheric circulation in a pattern bearing a striking resemblance to the northern annular mode, the primary mode of simulated and observed unforced atmospheric variability. The hypothesized reason for this similarity is that the circulation response to orbital forcing reflects the same dynamics generating unforced variability. These circulation anomalies are in turn responsible for significant fluctuations in other climate variables: Most of the simulated orbital signatures in wintertime surface air temperature over midlatitude continents are directly traceable not to local radiative forcing, but to orbital excitation of the northern annular mode. This has paleoclimate implications: during the point of the model integration corresponding to the last interglacial (Eemian) period, the orbital excitation of this mode generates a 1°–2°C warm surface air temperature anomaly over Europe, providing an explanation for the warm anomaly of comparable magnitude implied by the paleoclimate proxy record. The results imply that interpretations of the paleoclimate record must account for changes in surface temperature driven not only by changes in insolation, but also by perturbations in atmospheric dynamics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-07-15
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-03-15
    Description: Observations of subsurface temperatures are used to examine the winter-to-winter “reemergence” of sea surface temperature (SST) anomalies in the extratropical South Pacific Ocean. Reemergence is the mechanism through which SST anomalies formed in the late winter are sequestered beneath the relatively shallow summer mixed layer and then reentrained into the deepening mixed layer during the following autumn/winter. Although several studies have extensively examined reemergence in the Northern Hemisphere (NH), this is the first study to use observations of subsurface temperatures to document reemergence in the extratropical Southern Hemisphere (SH). The SH subsurface data reveal a pronounced reemergence signal in the western extratropical South Pacific. In this region, surface thermal anomalies formed during late SH winter are observed to persist below the summertime mixed layer and reemerge at the surface during the following early winter months. As such, SST anomalies formed during late winter are strongly correlated with SST anomalies during the following early winter but are not significantly correlated with SST anomalies during the intervening summer months. The results based on subsurface data are robust to small changes in the period of analysis and are qualitatively similar to existing evidence of reemergence in the NH. Analyses of independent SST data reveal that reemergence is widespread in the western extratropical South Pacific basin but is less discernible in SST anomalies over the eastern part of the basin.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...