ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (23)
  • Earth Resources and Remote Sensing  (12)
  • Astrophysics  (11)
  • 2015-2019  (13)
  • 2005-2009  (10)
  • 1975-1979
  • 1960-1964
  • 1
    Publication Date: 2018-06-06
    Description: Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (〈 about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing Environment (ISSN 0034-4257); Volume 113; Issue 11; 2366-2379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We report the results of a 28-month photometric campaign studying V1432 Aql, the only known eclipsing, asynchronous polar. Our data show that both the residual eclipse flux and eclipse OC timings vary strongly as a function of the spin-orbit beat period. Relying upon a new model of the system, we show that cyclical changes in the location of the threading region along the ballistic trajectory of the accretion stream could produce both effects. This model predicts that the threading radius is variable, in contrast to previous studies which have assumed a constant threading radius. Additionally, we identify a very strong photometric maximum which is only visible for half of the beat cycle. The exact cause of this maximum is unclear, but we consider the possibility that it is the optical counterpart of the third accreting polecap proposed by Rana et al. Finally, the rate of change of the white dwarf's spin period is consistent with it being proportional to the difference between the spin and orbital periods, implying that the spin period is approaching the orbital period asymptotically.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN35009 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); 449; 3; 3107-3120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observatIOns. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these.results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum.spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-I contains a near-extreme Kerr black hole with a spin parameter a* 〉 0.95 (3(sigma)). For a less probable (synchronous) dynamIcal model, we find a* 〉 0.92 (3(sigma)). In our analysis, we include the uncertainties in black hole mass orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.
    Keywords: Astrophysics
    Type: GSFC.JA.5551.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: Seasonal forecasts made by coupled atmosphere-ocean general circulation models (GCMs) are increasingly able to provide skillful forecasts of climate anomalies. At some centers, the capabilities of these models are being expanded to represent carbon-climate feedbacks including ocean biogeochemistry (OB), terrestrial biosphere (TB) interactions, and fires. These advances raise the question of whether such models can support skillful forecasts of carbon fluxes.Here, we examine whether land and ocean carbon flux anomalies associated with the 2015-16 El Nino could have been predicted months in advance. This El Nino was noteworthy for the magnitude of the ocean temperature perturbation, the skill with which this perturbation was predicted, and the extensive satellite observations that can be used to track its impact. We explore this topic using NASA's Goddard Earth Observing System (GEOS) model, which routinely produces an ensemble of seasonal climate forecasts, and a suite of offline dynamical and statistical models that estimate carbon flux processes. Using GEOS forecast fields from 2015-16 to force flux model hindcasts shows that these models are able to reproduce significant features observed by satellites. Specifically, OB hindcasts are able to predict anomalies in chlorophyll distributions with lead times of 3-4 months. The ability of TB hindcasts to reproduce NDVI anomalies is driven by the skill of the climate forecast, which is greatest at short lead times over tropical landmasses. Statistical fire forecasts driven by ocean climate indices are able to predict burned area in the tropics with lead times of 3-12 months. We also integrate the ocean and land hindcast fluxes into the GEOS GCM to examine the magnitude of the atmospheric carbon dioxide anomaly and compare with satellite and ground-based observations.While seasonal forecasting remains an active area of research, these results demonstrate that forecasts of carbon flux processes can support a variety of applications, potentially allowing scientists to understand carbon-climate feedbacks as they happen and to capitalize on more flexible satellite technologies that allow areas of interest to be targeted with lead times of weeks to months. We also provide a first glimpse at the spring 2019 carbon forecast using the GEOS-based forecasting system.
    Keywords: Earth Resources and Remote Sensing
    Type: B51E-1990 , GSFC-E-DAA-TN64286 , American Geophysical Union (AGU) Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN45461 , SPIE Optics + Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: The abundances of water-vapor and water-ice during the first ten million years of the protoplanetary solar nebula are simulated using a new condensation/sublimation model. This study builds on a "snow line" model reported in ApJ 627 L153 (2005); it uses a simple phenomenological model where water vapor molecules evolve from solar atomic abundance and eventually condenses to ice at colder points in the nebula once the water-vapor partial pressure exceeds a value determined by the phase diagram for water. The synthesis of water vapor from elementary species is modeled with a chemical network consisting of about 400 species and 4000 reactions. The evolution of the icy zone (and its relative abundance of solid ice) is traced from a limited region in the early hotter disk to its final state at the time when the gas is expelled and a planetary system begins to form. Possible effects of this dynamic motion on disk chemistry and organic molecule formation are also described.
    Keywords: Astrophysics
    Type: 4th Astrobiology Science Conference; Mar 26, 2006 - Mar 30, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
    Keywords: Astrophysics
    Type: 2005 DPS Meeting; Sep 02, 2005 - Sep 09, 2005; Cambridge; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-27
    Description: A dual-photoelastic-modulator- (PEM-) based spectropolarimetric camera concept is presented as an approach for global aerosol monitoring from space. The most challenging performance objective is to measure degree of linear polarization (DOLP) with an uncertainty of less than 0.5% in multiple spectral bands, at moderately high spatial resolution, over a wide field of view, and for the duration of a multiyear mission. To achieve this, the tandem PEMs are operated as an electro-optic circular retardance modulator within a high-performance reflective imaging system. Operating the PEMs at slightly different resonant frequencies generates a beat signal that modulates the polarized component of the incident light at a much lower heterodyne frequency. The Stokes parameter ratio q = Q/I is obtained from measurements acquired from each pixel during a single frame, providing insensitivity to pixel responsivity drift and minimizing polarization artifacts that conventionally arise when this quantity is derived from differences in the signals from separate detectors. Similarly, u = U/I is obtained from a different pixel; q and u are then combined to form the DOLP. A detailed accuracy and tolerance analysis for this polarimeter is presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Applied Optics; 46; 35; 8428-8445
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-12
    Description: In an effort to manufacture high-angular-resolution, grazing-incidence, x-ray optics, Marshall Space Flight Center (MSFC) is taking measures to improve its electroformed replicated optics. A key development is the use of computer-numerical control (CNC) polishing to deterministically improve the surface of electroless nickel mandrels used to replicate grazing- incidence optics. Metrology, control software and polishing parameters must function together seamlessly to reach the specifications required to replicate sub-arcsecond optics. Each change in polishing parameters effects the wear pattern of the polishing head. Using Richardson-Lucy deconvolution, the controller software fits the wear pattern to metrology data to calculate the changing feedrates across the mandrel. Here we present an overview of our process, and early results showing the effectiveness of deterministic polishing for replicated optics.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN73695 , SPIE Optics & Photonics; Aug 13, 2019 - Aug 15, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...