ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (22)
  • Aerodynamics  (11)
  • Astrophysics  (11)
  • 2015-2019  (10)
  • 2005-2009  (12)
  • 1975-1979
  • 1960-1964
  • 1
    Publication Date: 2019-07-19
    Description: The second flight of the HYPER-X Program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe integrated scramjet powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pull-up/push-over maneuvers performed throughout the X-43A cowl-closed descent phase. The subject flight research maneuvers were conducted in a Mach number range of 6.8 to 0.95 at altitudes from 92,000 ft to sea level. In this flight regime, the dynamic pressure varied from 1300 psf to 400 psf with angle-of-attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with pre-flight predictions based on wind tunnel test data. The X-43A flight-derived axial force was found to be 10 to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers greater than 4, the X-43A flight-derived stability and control characteristics resulted in larger than predicted static margins, with the largest discrepancy approximately 5-inches forward along the X(CG) at Mach 6. This would result in less static margin in pitch. The X-43A predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle-of-sideslip.
    Keywords: Aerodynamics
    Type: DFRC-459
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We report the results of a 28-month photometric campaign studying V1432 Aql, the only known eclipsing, asynchronous polar. Our data show that both the residual eclipse flux and eclipse OC timings vary strongly as a function of the spin-orbit beat period. Relying upon a new model of the system, we show that cyclical changes in the location of the threading region along the ballistic trajectory of the accretion stream could produce both effects. This model predicts that the threading radius is variable, in contrast to previous studies which have assumed a constant threading radius. Additionally, we identify a very strong photometric maximum which is only visible for half of the beat cycle. The exact cause of this maximum is unclear, but we consider the possibility that it is the optical counterpart of the third accreting polecap proposed by Rana et al. Finally, the rate of change of the white dwarf's spin period is consistent with it being proportional to the difference between the spin and orbital periods, implying that the spin period is approaching the orbital period asymptotically.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN35009 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); 449; 3; 3107-3120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
    Keywords: Aerodynamics
    Type: NF1676L-22595 , 2016 AIAA Aviation Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observatIOns. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these.results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum.spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-I contains a near-extreme Kerr black hole with a spin parameter a* 〉 0.95 (3(sigma)). For a less probable (synchronous) dynamIcal model, we find a* 〉 0.92 (3(sigma)). In our analysis, we include the uncertainties in black hole mass orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.
    Keywords: Astrophysics
    Type: GSFC.JA.5551.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN45461 , SPIE Optics + Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The abundances of water-vapor and water-ice during the first ten million years of the protoplanetary solar nebula are simulated using a new condensation/sublimation model. This study builds on a "snow line" model reported in ApJ 627 L153 (2005); it uses a simple phenomenological model where water vapor molecules evolve from solar atomic abundance and eventually condenses to ice at colder points in the nebula once the water-vapor partial pressure exceeds a value determined by the phase diagram for water. The synthesis of water vapor from elementary species is modeled with a chemical network consisting of about 400 species and 4000 reactions. The evolution of the icy zone (and its relative abundance of solid ice) is traced from a limited region in the early hotter disk to its final state at the time when the gas is expelled and a planetary system begins to form. Possible effects of this dynamic motion on disk chemistry and organic molecule formation are also described.
    Keywords: Astrophysics
    Type: 4th Astrobiology Science Conference; Mar 26, 2006 - Mar 30, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
    Keywords: Astrophysics
    Type: 2005 DPS Meeting; Sep 02, 2005 - Sep 09, 2005; Cambridge; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-12
    Description: In an effort to manufacture high-angular-resolution, grazing-incidence, x-ray optics, Marshall Space Flight Center (MSFC) is taking measures to improve its electroformed replicated optics. A key development is the use of computer-numerical control (CNC) polishing to deterministically improve the surface of electroless nickel mandrels used to replicate grazing- incidence optics. Metrology, control software and polishing parameters must function together seamlessly to reach the specifications required to replicate sub-arcsecond optics. Each change in polishing parameters effects the wear pattern of the polishing head. Using Richardson-Lucy deconvolution, the controller software fits the wear pattern to metrology data to calculate the changing feedrates across the mandrel. Here we present an overview of our process, and early results showing the effectiveness of deterministic polishing for replicated optics.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN73695 , SPIE Optics & Photonics; Aug 13, 2019 - Aug 15, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-04
    Description: NASAs Advanced Air Transport Technology (AATT) project is investigating boundary layer ingesting (BLI) propulsors for advanced subsonic commercial vehicle concepts to enable the reduction of fuel burn. A multidisciplinary team of researchers from NASA, United Technologies Research Center (UTRC), Virginia Polytechnic University, and the Air Force Arnold Engineering Development Complex developed and tested an embedded BLI inlet and distortion-tolerant fan (BLI2DTF) system in the NASA Glenn Research Center (GRC) 8- foot by 6-foot (8x6) transonic wind tunnel. The test demonstrated the component performance goals necessary for an overall fuel burn reduction of 3 to 5 percent on a large hybrid wing body (HWB) aircraft. Special test equipment, including a raised floor with flow effectors and a bleed system, was developed for use in the 8x6 to produce the appropriate incoming boundary layer representative of an HWB application. Detailed measurements were made to determine the inlet total pressure loss and distortion, fan stage efficiency, and aeromechanic performance including blade vibration stress and displacement response. Results from this test were used as input to a vehicle-level system study performed by the AATT project to assess the impact of BLI on an alternative advanced concept aircraft referred to as the NASA D8 (ND8), which is somewhat similar to the HWB in its integration of the propulsor. This paper will provide an overview of the project timeline, special test equipment needed in the wind tunnel to develop the appropriate incoming boundary layer, and the difficulties in designing a propulsor for the test. The paper will conclude with some representative aerodynamic and aeromechanic data from the test itself and conclude with how this data was used in the ND8 system study.
    Keywords: Aerodynamics
    Type: ISABE-2019-24264 , GRC-E-DAA-TN72111 , International Society for Air Breathing Engines (ISABE) Conference; Sep 22, 2019 - Sep 27, 2019; Canberra; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-29
    Description: _NASA's Advanced Air Transport Technology (AATT) project is investigating boundary layer ingesting (BLI) propulsors for advanced subsonic commercial vehicle concepts to enable the reduction of fuel burn. A multidisciplinary team of researchers from NASA, United Technologies Research Center (UTRC), Virginia Polytechnic University, and the Air Force Arnold Engineering Development Complex developed and tested an embedded BLI inlet and distortion-tolerant fan (BLI2DTF) system in the NASA Glenn Research Center (GRC) 8-foot by 6-foot (8x6) transonic wind tunnel. The test demonstrated the component performance goals necessary for an overall fuel burn reduction of 3 to 5 percent on a large hybrid wing body (HWB) aircraft. Special test equipment, including a raised floor with flow effectors and a bleed system, was developed for use in the 8x6 to produce the appropriate incoming boundary layer representative of an HWB application. Detailed measurements were made to determine the inlet total pressure loss and distortion, fan stage efficiency, and aeromechanic performance including blade vibration stress and displacement response. Results from this test were used as input to a vehicle-level system study performed by the AATT project to assess the impact of BLI on an alternative advanced concept aircraft referred to as the NASA D8 (ND8), which is somewhat similar to the HWB in its integration of the propulsor. This paper will provide an overview of the project timeline, special test equipment needed in the wind tunnel to develop the appropriate incoming boundary layer, and the difficulties in designing a propulsor for the test. The paper will conclude with some representative aerodynamic and aeromechanic data from the test itself and conclude with how this data was used in the ND8 system study.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN73213 , International Society for Air Breathing Engines (ISABE) Conference; Sep 22, 2019 - Sep 27, 2019; Canberra; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...