ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (10)
  • Amino Acid Sequence  (9)
  • Electronic structure and strongly correlated systems
  • 2015-2019  (11)
  • 2010-2014  (15)
  • 1
    Publication Date: 2015-07-14
    Description: Author(s): A. A. Aczel, L. Li, V. O. Garlea, J.-Q. Yan, F. Weickert, V. S. Zapf, R. Movshovich, M. Jaime, P. J. Baker, V. Keppens, and D. Mandrus We have investigated polycrystalline samples of the zigzag chain system BaTb 2 O 4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation ( μ SR ) . No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals the presence of lo… [Phys. Rev. B 92, 041110(R)] Published Mon Jul 13, 2015
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-26
    Description: Author(s): Joshua A. Gordon, Christopher L. Holloway, James Booth, Sung Kim, Yu Wang, James Baker-Jarvis, and David R. Novotny In this paper we demonstrate tunability of a metasurface, which is the two-dimensional equivalent of a metamaterial, also referred to as a metafilm, by changing the permittivity in a continuous flow channel that interacts with the metasurface. Numerical simulations and experimental results are prese... [Phys. Rev. B 83, 205130] Published Wed May 25, 2011
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-27
    Description: Author(s): Thomas E. Baker, E. Miles Stoudenmire, Lucas O. Wagner, Kieron Burke, and Steven R. White An exponential interaction is constructed so that one-dimensional atoms and chains of atoms mimic the general behavior of their three-dimensional counterparts. Relative to the more commonly used soft-Coulomb interaction, the exponential greatly diminishes the computational time needed for calculatin… [Phys. Rev. B 91, 235141] Published Wed Jun 24, 2015
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-14
    Description: We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed binding proteins may be useful for both diagnostics and therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleishman, Sarel J -- Whitehead, Timothy A -- Ekiert, Damian C -- Dreyfus, Cyrille -- Corn, Jacob E -- Strauch, Eva-Maria -- Wilson, Ian A -- Baker, David -- AI057141/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-07/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):816-21. doi: 10.1126/science.1202617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566186" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Binding Sites ; Computational Biology ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; *Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-10-25
    Description: The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azoitei, Mihai L -- Correia, Bruno E -- Ban, Yih-En Andrew -- Carrico, Chris -- Kalyuzhniy, Oleksandr -- Chen, Lei -- Schroeter, Alexandria -- Huang, Po-Ssu -- McLellan, Jason S -- Kwong, Peter D -- Baker, David -- Strong, Roland K -- Schief, William R -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):373-6. doi: 10.1126/science.1209368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021856" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Computational Biology ; Computer Simulation ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Surface Plasmon Resonance
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-05
    Description: Most models of gene duplication assume that the ancestral functions of the preduplication gene are independent and can therefore be neatly partitioned between descendant paralogs. However, many gene products, such as transcriptional regulators, are components within cooperative assemblies; here, we show that a natural consequence of duplication and divergence of such proteins can be competitive interference between the paralogs. Our example is based on the duplication of the essential MADS-box transcriptional regulator Mcm1, which is found in all fungi and regulates a large set of genes. We show that a set of historical amino acid sequence substitutions minimized paralog interference in contemporary species and, in doing so, increased the molecular complexity of this gene regulatory network. We propose that paralog interference is a common constraint on gene duplicate evolution, and its resolution, which can generate additional regulatory complexity, is needed to stabilize duplicated genes in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Christopher R -- Hanson-Smith, Victor -- Johnson, Alexander D -- F32 GM108299/GM/NIGMS NIH HHS/ -- R01 GM037049/GM/NIGMS NIH HHS/ -- R01 GM057049/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):104-8. doi: 10.1126/science.1240810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbiology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/genetics ; Candida albicans/genetics ; *Evolution, Molecular ; *Gene Duplication ; *Gene Regulatory Networks ; Kluyveromyces/genetics ; Minichromosome Maintenance 1 Protein/*genetics ; Molecular Sequence Data ; Saccharomyces cerevisiae/genetics ; Sequence Deletion ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-06-11
    Description: Down's syndrome (DS) is a genetic disorder caused by full or partial trisomy of human chromosome 21 and presents with many clinical phenotypes including a reduced incidence of solid tumours. Recent work with the Ts65Dn model of DS, which has orthologues of about 50% of the genes on chromosome 21 (Hsa21), has indicated that three copies of the ETS2 (ref. 3) or DS candidate region 1 (DSCR1) genes (a previously known suppressor of angiogenesis) is sufficient to inhibit tumour growth. Here we use the Tc1 transchromosomic mouse model of DS to dissect the contribution of extra copies of genes on Hsa21 to tumour angiogenesis. This mouse expresses roughly 81% of Hsa21 genes but not the human DSCR1 region. We transplanted B16F0 and Lewis lung carcinoma tumour cells into Tc1 mice and showed that growth of these tumours was substantially reduced compared with wild-type littermate controls. Furthermore, tumour angiogenesis was significantly repressed in Tc1 mice. In particular, in vitro and in vivo angiogenic responses to vascular endothelial growth factor (VEGF) were inhibited. Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS1and ERG) and novel endothelial cell-specific genes, never previously shown to be involved in angiogenesis (JAM-B and PTTG1IP), that, when overexpressed, are responsible for inhibiting angiogenic responses to VEGF. Three copies of these genes within the stromal compartment reduced tumour angiogenesis, explaining the reduced tumour growth in DS. Furthermore, we expect that, in addition to the candidate genes that we show to be involved in the repression of angiogenesis, the Tc1 mouse model of DS will permit the identification of other endothelium-specific anti-angiogenic targets relevant to a broad spectrum of cancer patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479956/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479956/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reynolds, Louise E -- Watson, Alan R -- Baker, Marianne -- Jones, Tania A -- D'Amico, Gabriela -- Robinson, Stephen D -- Joffre, Carine -- Garrido-Urbani, Sarah -- Rodriguez-Manzaneque, Juan Carlos -- Martino-Echarri, Estefania -- Aurrand-Lions, Michel -- Sheer, Denise -- Dagna-Bricarelli, Franca -- Nizetic, Dean -- McCabe, Christopher J -- Turnell, Andrew S -- Kermorgant, Stephanie -- Imhof, Beat A -- Adams, Ralf -- Fisher, Elizabeth M C -- Tybulewicz, Victor L J -- Hart, Ian R -- Hodivala-Dilke, Kairbaan M -- 080174/Wellcome Trust/United Kingdom -- 12007/Cancer Research UK/United Kingdom -- A12007/Cancer Research UK/United Kingdom -- A3585/Cancer Research UK/United Kingdom -- G0501003/Medical Research Council/United Kingdom -- G0501003(75694)/Medical Research Council/United Kingdom -- G0601056/Medical Research Council/United Kingdom -- G0901609/Medical Research Council/United Kingdom -- MC_U117527252/Medical Research Council/United Kingdom -- U.1175.02.001.00001(60485)/Medical Research Council/United Kingdom -- England -- Nature. 2010 Jun 10;465(7299):813-7. doi: 10.1038/nature09106.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Adhesion and Angiogenesis Laboratory, Barts Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK. l.reynolds@qmul.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535211" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/genetics/metabolism ; Animals ; Carcinoma, Lewis Lung/*blood supply/complications/genetics/pathology ; Carrier Proteins/genetics/metabolism ; Cell Adhesion Molecules/antagonists & inhibitors/genetics/metabolism ; Chromosomes, Mammalian/genetics ; *Disease Models, Animal ; Down Syndrome/complications/*genetics/physiopathology ; Female ; Gene Dosage/*genetics ; Humans ; Immunoglobulins/genetics/metabolism ; Male ; Melanoma, Experimental/*blood supply/complications/genetics/pathology ; Mice ; Neoplasm Transplantation ; Neovascularization, Pathologic/*genetics/pathology ; Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Protein c-ets-2/genetics/metabolism ; Transcription Factors ; Trisomy/genetics ; Vascular Endothelial Growth Factor A/antagonists & ; inhibitors/metabolism/pharmacology ; Vascular Endothelial Growth Factor Receptor-2/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-04
    Description: Advanced age is the main risk factor for most chronic diseases and functional deficits in humans, but the fundamental mechanisms that drive ageing remain largely unknown, impeding the development of interventions that might delay or prevent age-related disorders and maximize healthy lifespan. Cellular senescence, which halts the proliferation of damaged or dysfunctional cells, is an important mechanism to constrain the malignant progression of tumour cells. Senescent cells accumulate in various tissues and organs with ageing and have been hypothesized to disrupt tissue structure and function because of the components they secrete. However, whether senescent cells are causally implicated in age-related dysfunction and whether their removal is beneficial has remained unknown. To address these fundamental questions, we made use of a biomarker for senescence, p16(Ink4a), to design a novel transgene, INK-ATTAC, for inducible elimination of p16(Ink4a)-positive senescent cells upon administration of a drug. Here we show that in the BubR1 progeroid mouse background, INK-ATTAC removes p16(Ink4a)-positive senescent cells upon drug treatment. In tissues--such as adipose tissue, skeletal muscle and eye--in which p16(Ink4a) contributes to the acquisition of age-related pathologies, life-long removal of p16(Ink4a)-expressing cells delayed onset of these phenotypes. Furthermore, late-life clearance attenuated progression of already established age-related disorders. These data indicate that cellular senescence is causally implicated in generating age-related phenotypes and that removal of senescent cells can prevent or delay tissue dysfunction and extend healthspan.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Darren J -- Wijshake, Tobias -- Tchkonia, Tamar -- LeBrasseur, Nathan K -- Childs, Bennett G -- van de Sluis, Bart -- Kirkland, James L -- van Deursen, Jan M -- AG13925/AG/NIA NIH HHS/ -- CA96985/CA/NCI NIH HHS/ -- P30 DK050456/DK/NIDDK NIH HHS/ -- R01 AG013925/AG/NIA NIH HHS/ -- R01 AG013925-14/AG/NIA NIH HHS/ -- R01 CA096985/CA/NCI NIH HHS/ -- R01 CA096985-10/CA/NCI NIH HHS/ -- England -- Nature. 2011 Nov 2;479(7372):232-6. doi: 10.1038/nature10600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22048312" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/cytology/drug effects/pathology ; Aging/drug effects/*physiology ; Animals ; Bone Marrow Cells/cytology/drug effects ; Cell Aging/drug effects/*physiology ; Cell Count ; Cell Cycle Proteins ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/*metabolism ; Eye/cytology/drug effects/pathology ; Female ; Gene Expression ; Genotype ; Longevity/drug effects/physiology ; Male ; Mice ; Mice, Transgenic ; Muscle, Skeletal/cytology/drug effects/pathology ; Phenotype ; Progeria/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Tacrolimus/analogs & derivatives/pharmacology ; Time Factors ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-17
    Description: Many globular and natively disordered proteins can convert into amyloid fibrils. These fibrils are associated with numerous pathologies as well as with normal cellular functions, and frequently form during protein denaturation. Inhibitors of pathological amyloid fibril formation could be useful in the development of therapeutics, provided that the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibrils as templates, we have designed and characterized an all-D-amino-acid inhibitor of the fibril formation of the tau protein associated with Alzheimer's disease, and a non-natural L-amino-acid inhibitor of an amyloid fibril that enhances sexual transmission of human immunodeficiency virus. Our results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures. Because the inhibiting peptides have been designed on structures of dual-beta-sheet 'steric zippers', the successful inhibition of amyloid fibril formation strengthens the hypothesis that amyloid spines contain steric zippers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sievers, Stuart A -- Karanicolas, John -- Chang, Howard W -- Zhao, Anni -- Jiang, Lin -- Zirafi, Onofrio -- Stevens, Jason T -- Munch, Jan -- Baker, David -- Eisenberg, David -- P50 AG016570/AG/NIA NIH HHS/ -- R01 AG029430/AG/NIA NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jun 15;475(7354):96-100. doi: 10.1038/nature10154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Howard Hughes Medical Institute, UCLA, Box 951970, Los Angeles, California 90095-1570, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21677644" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*chemistry/*pharmacology ; Amyloid/*antagonists & inhibitors/*chemistry/metabolism ; Amyloid beta-Peptides/antagonists & inhibitors/chemistry/metabolism ; Computer-Aided Design ; *Drug Design ; HIV Infections/virology ; Hydrogen Bonding ; Kinetics ; Models, Molecular ; Peptides/*chemistry/*pharmacology ; Polylysine/pharmacology ; Protein Conformation ; tau Proteins/antagonists & inhibitors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-22
    Description: Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof of principle, the possibility of targeting the mosquito's ability to serve as a disease vector. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations. We have suggested previously that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions and the homing endonuclease gene I-SceI, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to invade receptive mosquito cage populations rapidly, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093433/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093433/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Windbichler, Nikolai -- Menichelli, Miriam -- Papathanos, Philippos Aris -- Thyme, Summer B -- Li, Hui -- Ulge, Umut Y -- Hovde, Blake T -- Baker, David -- Monnat, Raymond J Jr -- Burt, Austin -- Crisanti, Andrea -- CA133831/CA/NCI NIH HHS/ -- RL1 CA133831/CA/NCI NIH HHS/ -- RL1 CA133831-01/CA/NCI NIH HHS/ -- RL1 CA133831-02/CA/NCI NIH HHS/ -- RL1 CA133831-03/CA/NCI NIH HHS/ -- RL1 CA133831-04/CA/NCI NIH HHS/ -- RL1 CA133831-05/CA/NCI NIH HHS/ -- RL1 GM084433/GM/NIGMS NIH HHS/ -- RL1 GM084433-01/GM/NIGMS NIH HHS/ -- RL1 GM084433-02/GM/NIGMS NIH HHS/ -- RL1 GM084433-03/GM/NIGMS NIH HHS/ -- RL1 GM084433-04/GM/NIGMS NIH HHS/ -- RL1 GM084433-05/GM/NIGMS NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 12;473(7346):212-5. doi: 10.1038/nature09937. Epub 2011 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imperial College London, Department of Life Sciences, South Kensington Campus, London, SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21508956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Anopheles gambiae/*genetics ; Deoxyribonucleases, Type II Site-Specific/genetics ; Female ; Genes, Reporter/genetics ; *Genetic Engineering ; Genotype ; Insect Vectors/*genetics ; Male ; Molecular Sequence Data ; Mosquito Control/*methods ; Saccharomyces cerevisiae Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...