ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 100 (1988), S. 183-191 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract High-silica rhyolites of the Sierra La Primavera, a late Pleistocene center near Guadalajara, are extremely Sr-poor (0.3–1.3 ppm), yet (with one exception) values of 87Sr/86Sri are relatively low at 0.7041–0.7048. Values of 143Nd/144Nd for all the rhyolites are (within errors) identical to a basalt at 0.5129. These surprisingly primitive values, along with feldspar ∂18O of +6.6‰, are consistent with an origin by fractional crystallization of mantle-derived basalt. However, absence of the large volume of associated intermediate rocks that would be expected if the 40 km3 of erupted rhyolite were produced mainly by fractional crystallization suggests alternative processes involving partial melting of Mesozoic or Tertiary mafic intrusive rocks (or lower-crustal metamorphic equivalents). The latter interpretation is preferred, especially in light of comparative data for other North American, Cenozoic, high-silica rhyolites. Isotopic compositions correlate with basement age, but generally lie between values for associated basalts and the underlying crust. Nearly all can be interpreted as containing both a young mantle-derived component and a crustal component, probably derived by partial melting at intermediate to deep levels of the crust. No matter what the proportions of mantle- and crust-derived material in parental magmas, the extremely low concentrations of Sr and Ba in the high-silica rhyolites require extensive fractional crystallization of feldspar-rich assemblages after parental liquids attain rhyolitic compositions. At La Primavera, contamination by shallow roof rocks probably led to the 0.708 87Sr/86Sri ratio of the earliest postcaldera lava dome, which is thought to have erupted through the same vent as the caldera-forming pyroclastic flows. Contamination associated with collapse apparently affected only a small volume of magma in contact with brecciated wall rocks close to the vent, as nearby lavas that erupted during the same episode about 95 ky ago are unaffected. No identifiable lowering of ∂18O took place on caldera collapse. Rhyolitic lavas that erupted 75, 60, and 30 ky ago document postcaldera chemical recovery of the chamber to progressively more evolved compositions in its upper reaches, but show little variation in ∂18O, 87Sr/ 86Sri, or 143Nd/144Nd with time, suggesting that the bulk of the rhyolitic magma within the chamber was isolated from significant wall-rock contamination. Most of the small range of 87Sr/86Sri among the rhyolites can be attributed to pre-eruptive, in situ decay of 87Rb, resulting in a measurable secular increase of 87Sr/86Sr in these Sr-poor magmas. The 87Sr/86Sri of the youngest rhyolite, however, is somewhat lower than predicted, suggesting that the silicic magma chamber was at times open to interaction with more-mafic magmas from below.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Concentric zoning in the Criffell pluton takes the form of a discontinuous outer margin of metaluminous hornblende granodiorite and an inner core of increasingly peraluminous muscovite granite. Previous investigations using major and selected trace elements have shown the variation to consist of both smooth and abrupt trends. This study of 15 samples for the rare earth elements shows patterns which strongly correlate with Sr and O isotope data. The principal feature of these data is a progressive decrease in total rare earths with approach to the geochemical centre of the pluton, and evolution to more radiogenic Sr and more silicic and peraluminous compositions. No significant europium anomaly is developed. The slope of light to heavy rare earths using La/Yb ratios varies in a complex manner showing no significant correlation with any of the main indices of bulk composition, but with peak values occurring within the inner part of the outer portion of the pluton. A map of Ce/Y variation based on 172 Ce and Y determinations is essentially identical. These data are considered in terms of various petrogenetic models and it is concluded that the data can only be interpreted in terms of a major and progressive involvement of crustally-derived anatectic magma towards the pluton interior. Trace element modelling favours processes of the assimilation-fractional crystallisation (AFC) type for the generation of this example of I-type to S-type granitoid zonation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-09
    Keywords: 121-756B; AGE; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Joides Resolution; Leg121; Ocean Drilling Program; ODP; Osmium; Osmium-187/Osmium-186 ratio; Sample code/label; South Indian Ridge, South Indian Ocean
    Type: Dataset
    Format: text/tab-separated-values, 33 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nielsen, Sune G; Gannoun, Abdelmouhcine; Marnham, Charles; Burton, Kevin W; Halliday, Alex N; Hein, James R (2011): New age for ferromanganese crust 109D-C and implications for isotopic records of lead, neodymium, hafnium, and thallium in the Pliocene Indian Ocean. Paleoceanography, 26(2), PA2213, https://doi.org/10.1029/2010PA002003
    Publication Date: 2024-01-09
    Description: This study presents a high-resolution record of osmium and thallium isotopes in a ferro-manganese (Fe-Mn) crust from the Indian Ocean, Antipode 109D-C. These results, when combined with additional new Os isotope data from ODP Hole 756B in the southeast Indian Ocean, define a new best estimate for the age at the base of this crust of ~6.5 Ma, which is significantly different from a previous estimate of ~15 Ma based on Co-flux modeling. The Tl isotope record obtained for the Indian Ocean resembles that for the Pacific Ocean with a small but well-defined increase occurring over the last ~5 Myr. This contrasts with two records from the Atlantic Ocean which do not have resolvable variations. Ocean basin-scale Tl isotope variation may be inconsistent with the inferred modern marine residence time for Tl of ~20 kyr but could be explained by an increase in ocean crust production rates in the Pacific and Indian oceans since ~10 Ma. The improved age model for 109D-C reveals that the Hf isotope composition of Indian Ocean bottom waters has remained homogenous over the last ~6 Myr. Thus, this isotope system does not bear any evidence that the influence of North Atlantic Deep Water in the formation of Indian Ocean bottom waters has changed during that time. However, because of the lack of knowledge about Hf isotopes as a tracer of ocean circulation, we cannot conclude that export of NADW decreased over the last 6 Myr.
    Keywords: 121-756B; ANTIPODE; ANTP-109D-C; Dredge; DRG; DRILL; Drilling/drill rig; Joides Resolution; Leg121; Melville; Ocean Drilling Program; ODP; South Indian Ridge, South Indian Ocean
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 302 (2011): 253-254, doi:10.1016/j.epsl.2010.12.023.
    Description: The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep-waters. In particular, the upwelling of silicic acid (Si(OH)4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep-water Si(OH)4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH)4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH)4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH)4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep-ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.
    Description: Cruise NBP0805 was funded by NSF Office of Polar Programs (OPP) Antarctic Sciences (grant number ANT-0636787). Data from the Palmer LTER data archive were supported by Office of Polar Programs, NSF grants OPP-9011927, OPP-9632763 and OPP-0217282. The work was funded by the Natural Environment Research Council (NERC) grant NE/F005296/1 and an Antarctic Science Bursary.
    Keywords: Porifera ; Spicule ; Silicic acid ; Deep-water ; Silicon cycle ; Glacial
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Antarctic Science 23 (2011): 34-42, doi:10.1017/S0954102010000593.
    Description: Cycling of deep-water silicon (Si) within the Southern Ocean, and its transport into other ocean basins, may be an important player in the uptake of atmospheric carbon, and global climate. Recent work has shown that the Si isotope (denoted by δ29Si or δ30Si) composition of deep-sea sponges reflects the availability of dissolved Si during growth, and is a potential proxy for past deep and intermediate water silicic acid concentrations. As with any geochemical tool, it is essential to ensure analytical precision and accuracy, and consistency between methodologies and laboratories. Analytical bias may exist between laboratories, and sponge material may have matrix effects leading to offsets between samples and standards. Here, we report an interlaboratory evaluation of Si isotopes in Antarctic and subAntarctic sponges. We review independent methods for measuring Si isotopes in sponge spicules. Our results show that separate subsamples of non-homogenised sponges measured by three methods yield isotopic values within analytical error for over 80% of specimens. The relationship between δ29Si and δ30Si in sponges is consistent with kinetic fractionation during biomineralisation. Sponge Si isotope analyses show potential as palaeoceaongraphic archives, and we suggest Southern Ocean sponge material would form a useful additional reference standard for future spicule analyses.
    Description: Cruise NBP0805 was funded by NSF Office of Polar Programs (OPP) Antarctic Sciences (grant number ANT-0636787). KH is funded by a Doherty Postdoctoral Scholarship at WHOI, and the work has also been funded by the Natural Environment Research Council (NERC) grant NE/F005296/1 and an Antarctic Science Bursary.
    Keywords: Biogeochemistry ; Porifera ; Nutrient ; Calibration ; Silicic acid
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 96 (2012): 174-192, doi:10.1016/j.gca.2012.08.002.
    Description: Despite a growing body of work that uses diatom δ30Si to reconstruct past changes in silicic acid utilisation, few studies have focused on calibrating core top data with modern oceanographic conditions. In this study, a microfiltration technique is used to divide Southern Ocean core top silica into narrow size ranges, separating components such as radiolaria, sponge spicules and clay minerals from diatoms. Silicon isotope analysis of these components demonstrates that inclusion of small amounts of non-diatom material can significantly offset the measured from the true diatom δ30Si. Once the correct size fraction is selected (generally 2–20 μm), diatom δ30Si shows a strong negative correlation with surface water silicic acid concentration (R2 = 0.92), highly supportive of the qualitative use of diatom δ30Si as a proxy for silicic acid utilisation. The core top diatom δ30Si matches well with mixed layer filtered diatom δ30Si from published in situ studies, suggesting little to no effect of either dissolution on export through the water column, or early diagenesis, on diatom δ30Si in sediments from the Southern Ocean. However, the core top diatom δ30Si shows a poor fit to simple Rayleigh or steady state models of the Southern Ocean when a single source term is used. The data can instead be described by these models only when variations in the initial conditions of upwelled silicic acid concentration and δ30Si are taken into account, a caveat which may introduce some error into quantitative reconstructions of past silicic acid utilisation from diatom δ30Si.
    Description: The Oxford isotope geochemistry lab is supported by an ERC grant to Halliday. This work was carried out as part of Natural Environmental Research Council (NERC) Grant NE/F005296/1, and Antarctic Peninsula core tops collected thanks to the Antarctic Funding Initiative Grant AFI4-02.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 292 (2010): 290-300, doi:10.1016/j.epsl.2010.02.005.
    Description: The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep-waters. In particular, the upwelling of silicic acid (Si(OH)4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep-water Si(OH)4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH)4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH)4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH)4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep-ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concur rent reduction in diatom silicification or a shift from siliceous to organic walled phytoplankton.
    Description: Cruise NBP0805 was funded by NSF Office of Polar Programs (OPP) Antarctic Sciences (grant number ANT-0636787). Data from the Palmer LTER data archive were supported by Office of Polar Programs, NSF grants OPP-9011927, OPP-9632763 and OPP-0217282. The work was funded by the Natural Environment Research Council (NERC) grant NE/F005296/1 and an Antarctic Science Bursary.
    Keywords: Porifera ; Spicule ; Silicic acid ; Deep-water ; Silicon cycle ; Glacial
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-20
    Description: Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe−Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...