ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Design, Testing and Performance  (41)
  • Earth Resources and Remote Sensing  (29)
  • Astrophysics  (27)
  • 2015-2019  (25)
  • 2010-2014  (30)
  • 2000-2004  (42)
Collection
Years
Year
  • 11
    Publication Date: 2017-10-02
    Description: CaAl rich refractory mineral inclusions (CAIs) found at 1 - 10% mass fraction in primitive chondrites appear to be several million years older than the dominant (chondrule) components in the same parent bodies. A prevalent concern is that it is difficult to retain CAIs for this long against gas-drag-induced radial drift into the sun. We assess a hot inner (turbulent) nebula context for CAI formation, using analytical models of nebula evolution and particle diffusion. We show that outward radial diffusion in a weakly turbulent nebula can prevent significant numbers of CAI-size particles from being lost into the sun for times of 1 - 3 x 10(exp 6) years. To match the CAI abundances quantitatively, we advocate an enhancement of the inner hot nebula in silicate-forming material, due to rapid inward migration of very primitive, silicate and carbon rich, meter-sized objects. 'Combustion' of the carbon into CO would make the CAI formation environment more reduced than solar, as certain observations imply. Abundant CO might also play a role in mass-independent chemical fractionation of oxygen isotopes as seen in CAIs and associated primitive, high-temperature condensates.
    Keywords: Astrophysics
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-08
    Description: The Local Scale Observation Site (LSOS) is the smallest study site of the Cold LandProcesses Experiment (CLPX) and is located within the Fraser Meso-cell Study Area (MSA), near the Fraser Experimental Forest Headquarters Facility, in Fraser, CO USA.The 100-m x 100-m site consists of a small open field, a managed dense canopy and an open, mixed age canopy. Unlike the other components of the experiment, which focus on spatial distributions at relatively brief snapshots in time, measurements at the local scale site focused on the temporal domain.
    Keywords: Earth Resources and Remote Sensing
    Type: Fall Meeting of the American Geophysical Union; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: Important clues to the chemical and dynamical history of elliptical galaxies are encoded in the abundances of heavy elements in the X-ray emitting plasma. We derive the hot ISM abundance pattern in inner (0.2.3R(sub e)) and outer (2.3.4.6R(sub e)) regions of NGC 4472 from analysis of Suzaku spectra, supported by analysis of co- spatial XMM-Newton spectra. The low background and relatively sharp spectral resolution of the Suzaku XIS detectors, combined with the high luminosity and temperature in NGC 4472, enable us to derive a particularly extensive abundance pattern that encompasses O, Ne, Mg, Al, Si, S, Ar, Ca, Fe, and Ni in both regions. We apply simple chemical evolution models to these data, and conclude that the abundances are best explained by a combination of alpha-element enhanced stellar mass loss and direct injection of Type Ia supernova (SNIa) ejecta. We thus confirm the inference, based on optical data, that the stars in elliptical galaxies have supersolar [alpha/Fe] ratios, but find that that the present-day SNIa rate is approximately 4.6 times lower than the standard value. We find SNIa yield sets that reproduce Ca and Ar, or Ni, but not all three simultaneously. The low abundance of O relative to Ne and Mg implies that standard core collapse nucleosynthesis models overproduce O by approximately 2.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-18
    Description: The dynamical evolution of the protoplanetary nebula is investigated using analytical solutions of the surface density transport equations. Constant and beta viscosity turbulence models are compared with a functional analytical model and the well-known alpha viscosity formulation. The beta viscosity model, heretofore used for steady-state disks, is shown to be a viable tool for separating dynamic and thermodynamic properties of an evolving disk.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-18
    Description: Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.
    Keywords: Astrophysics
    Type: DPS; Nov 27, 2001 - Dec 01, 2001; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-17
    Description: The Astrobiology Explorer (ABE) is a Medium-Class Explorer (MIDEX) mission concept currently under study at NASA's Ames Research Center. ABE will conduct infrared (IR) spectroscopic observations with much better sensitivity than Infrared Space Observatory (ISO) or the Stratospheric Observatory for Infrared Astronomy program (SOFIA) in order to address outstanding astrobiologically important problems in astrochemistry as well as important astrophysical investigations. The core observational astrobiology program would make fundamental scientific progress in understanding the cosmic history of molecular carbon, the distribution of organic matter in the diffuse interstellar medium, tracing the chemical history of complex organic molecules in the interstellar medium, and the evolution of organic ices in young planetary systems. The ABE instrument concept includes a 0.5 m aperture Cassegrain telescope and a suite of three moderate resolution (R = 1000 - 4000) spectrographs which cover the entire lambda = 2.5-20 micron spectral region. Use of large format (1024 x 1024 pixel or larger) IR detector arrays will allow each spectrograph to cover an entire octave of spectral range per exposure without any moving parts. The telescope is passively cooled by a sun shade to below 65 K, and the detectors are cooled with solid H2 cryogen to approximately 8 K. ABE will be placed in an Earth-trailing one AU solar orbit by a Delta II launch vehicle. This energetically favorable orbit provides a low thermal background, affords good access to the entire sky over the one year mission lifetime, and allows adequate communications bandwidth. The spacecraft will be stabilized in three axes and will be pointed to an accuracy of approximately one arcsecond at ABE's several thousand individual scientific targets.
    Keywords: Astrophysics
    Type: UV, Optical and IR Space Telescopes and Instruments; Mar 26, 2000 - Mar 31, 2000; Munich; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, numerical simulations and an experiment using the multishock shield system is described for a cylindrical projectile composed of Nylon, aluminum and void that is approximately 8 cm in diameter and 10 cm in length weighing 670 g impacting the multishock shield normal to the surface with approximately 16.5 MJ of kinetic energy. The multishock shield system has been optimized to facilitate the fragmentation, spread and deceleration of the projectile remnants using hydrodynamic simulations of the impact event. The characteristics and function of each of the layers of the multishock system will be discussed along with considerations for deployment and improvement.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30655 , International Astronautical Congress 2014; Sep 29, 2014 - Oct 03, 2014; Toronto, Ontario, Canada; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-18
    Description: The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0003-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-17
    Description: The NASA Charging Analyzer Program (NASCAP) spacecraft charging software developed by Maxwell Technologies has been widely used for the past fifteen to twenty years in satellite design and investigation of spacecraft charging related anomalies. Individual versions of the NASCAP software are available for use in low inclination, low Earth orbit environments (NASCAP[LEO) and geostationary orbit environments (NASCAP/GEO). In addition, the Potentials of Large objects in the Auroral Region (POLAR) code is available for use in LEO polar orbit environments. NASCAP/GEO and POLAR were both written in the 1980's using algorithms appropriate for the computers of the time. They solve the Poisson-Vlasov system for currents and densities assuming limited speed and memory of computer systems standard for the day. In addition, use of the charging models requires individual input files that are not readily transported into the various codes to facilitate comparison of results by the user.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 7th Spacecraft Charging Technology Conference; Apr 23, 2001 - Apr 27, 2001; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...