ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (303)
  • 2010-2014  (288)
  • 2000-2004  (144)
  • 1990-1994  (196)
  • 1965-1969  (21)
  • 1955-1959  (5)
Collection
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Chichester [u.a.] : Wiley
    Call number: AWI G5-96-0262
    Type of Medium: Monograph available for loan
    Pages: XVI, 526 S.
    ISBN: 0471940437
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    London : Hodder Education
    Call number: AWI G7-11-0061
    Description / Table of Contents: Glaciers & Glaciation is the classic textbook for all students of glaciation. Stimulating and accessible, it has established a reputation as a comprehensive and essential resource. In this new edition, the text, references and illustrations have been thoroughly updated to provide a state-of-the-art overview of the nature, origin and behaviour of glaciers and the geological and geomorphological evidence for their past history on earth. The first part of the book investigates the processes involved in forming glacier ice, the natureof glacier-climate relationships, the mechanisms of glacier flow and the interactions of glaciers with other natural systems such as rivers, lakes and oceans. In the second part, the emphasis moves to landforms and sediment, the interpretation of the earth's glacial legacy and the reconstruction of glacial depositional environments and palaeoglaciology.
    Type of Medium: Monograph available for loan
    Pages: XIV, 802 Seiten , Illustrationen
    Edition: Second edition
    ISBN: 9780340905791
    Language: English
    Note: CONTENTS PREFACE PREFACE TO THE SECOND EDITION ACKNOWLEDGEMENTS PART ONE GLACIERS 1 INTRODUCTION 1.1 Glacier systems 1.1.1 Mass balance 1.1.2 Meltwater 1.1.3 Glacier motion 1.1.4 Glaciers and sea-level change 1.1.5 Erosion and debris transport 1.1.6 Glacial sediments, landforms and landscapes 1.2 Glacier morphology 1.2.1 Ice sheets and ice caps 1.2.2 Glaciers constrained by topography 1.2.3 Ice shelves 1.3 Present distribution of glaciers 1.3.1 Influence of latitude and altitude 1.3.2 Influence of aspect, relief and distance from a moisture source 1.4 Past distribution of glaciers 1.4.1 'Icehouse' and 'greenhouse' worlds 1.4.2 Cenozoic glaciation 2 SNOW, ICE AND CLIMATE 2.1 Introduction 2.2 Surface energy balance 2.2.1 Changes of state and temperature 2.2.2 Shortwave radiation 2.2.3 Longwave radiation 2.2.4 Sensible and latent heat: turbulent fluxes 2.2.5 Energy supplied by rain 2.2.6 Why is glacier ice blue? 2.3 Ice temperature 2.3.1 The melting point of ice 2.3.2 Controls on ice temperature 2.3.3 Thermal structure of glaciers and ice sheets 2.4 Processes of accumulation and ablation 2.4.1 Snow and ice accumulation 2.4.2 Transformation of snow to ice 2.4.3 Melting of snow and ice 2.4.4 Sublimation and evaporation 2.4.5 The influence of debris cover 2.5 Mass balance 2.5.1 Definitions 2.5.2 Measurement of mass balance 2.5.3 Annual mass balance cycles 2.5.4 Mass balance gradients 2.5.5 The equilibrium line 2.5.6 Glaciation levels or glaciation thresholds 2.5.7 Glacier sensitivity to climate change 2.6 Glacier-climate interactions 2.6.1 Effects of glaciers and ice sheets on the atmosphere 2.7 Ice cores 2.7.1 Ice coring programmes 2.7.2 Stable isotopes 2.7.3 Ancient atmospheres: the gas content of glacier ice 2.7.4 Solutes and particulates 3 GLACIER HYDROLOGY 3.1 Introduction 3.2 Basic concepts 3.2.1 Water sources and routing 3.2.2 Hydraulic potential 3.2.3 Resistance to flow 3.2.4 Channel wall processes: melting, freezing and ice deformation 3.3 Supraglacial and englacial drainage 3.3.1 Supraglacial water storage and drainage 3.3.2 Englacial drainage 3.4 Subglacial drainage 3.4.1 Subglacial channels 3.4.2 Water films 3.4.3 Linked cavity systems 3.4.4 Groundwater flow 3.4.5 Water at the ice-sediment interface 3.5 Glacial hydrological systems 3.5.1 Temperate glaciers 3.5.2 Polythermal glaciers 3.5.3 Modelling glacial hydrological systems 3.6 Proglacial runoff 3.6.1 Seasonal and shorter-term cycles 3.6.2 Runoff and climate change 3.7 Glacial lakes and outburst floods 3.7.1 Introduction 3.7.2 Moraine-dammed lakes 3.7.3 Ice-dammed lakes 3.7.4 Icelandic subglacial lakes 3.7.5 Estimating GLOF magnitudes 3.8 Life in glaciers 3.8.1 Supraglacial ecosystems 3.8.2 Subglacial ecosystems 3.9 Glacier hydrochemistry 3.9.1 Overview 3.9.2 Snow chemistry 3.9.3 Chemical weathering processes 3.9.4 Subglacial chemical weathering 3.9.5 Proglacial environments 3.9.6 Rates of chemical erosion 4 PROCESSES OF GLACIER MOTION 4.1 Introduction 4.2 Stress and strain 4.2.1 Stress 4.2.2 Strain 4.2.3 Rheology: stress-strain relationships 4.2.4 Force balance in glaciers 4.3 Deformation of ice 4.3.1 Glen's Flow Law 4.3.2 Crystal fabric, impurities and water content 4.3.3 Ice creep velocities 4.4 Sliding 4.4.1 Frozen beds 4.4.2 Sliding of wet-based ice 4.4.3 Glacier-bed friction 4.4.4 The role of water 4.5 Deformable beds 4.5.1 The Boulton-Hindmarsh model 4.5.2 Laboratory testing of subglacial tills 4.5.3 Direct observations of deformable glacier beds 4.5.4 Rheology of subglacial till 4.6 Rates of basal motion 4.6.1 'Sliding laws' 4.6.2 Local and non-local controls on ice velocity 4.7 Crevasses and other structures: strain made visible 4.7.1 Crevasses 4.7.2 Crevasse patterns 4.7.3 Layering, foliation and related structures 5 GLACIER DYNAMICS 5.1 Introduction 5.2 Understanding glacier dynamics 5.2.1 Balance velocities 5.2.2 Deviations from the balance velocity 5.2.3 Changes in ice thickness: continuity 5.2.4 Thermodynamics 5.3 Glacier models 5.3.1 Overview 5.3.2 Equilibrium glacier profiles 5.3.3 Time-evolving glacier models 5.4 Dynamics of valley glaciers 5.4.1 Intra-annual velocity variations 5.4.2 Multi-annual variations 5.5 Calving glaciers 5.5.1 Flow of calving glaciers 5.5.2 Calving processes 5.5.3 'Calving laws' 5.5.4 Advance and retreat of calving glaciers 5.6 Ice shelves 5.6.1 Mass balance of k e shelves 5.6.2 Flow of ice shelves 5.6.3 Ice shelf break-up 5.7 Glacier surges 5.7.1 Overview 5.7.2 Distribution of surging glaciers 5.7.3 Temperate glacier surges 5.7.4 Polythermal surging glaciers 5.7.5 Surge mechanisms 6 THE GREENLAND AND ANTARCTIC ICE SHEETS 6.1 Introduction 6.2 The Greenland Ice Sheet 6.2.1 Overview 6.2.2 Climate and surface mass balance 6.2.3 Ice sheet flow 6.2.4 Ice streams and outlet glaciers 6.3 The Antarctic Ice Sheet 6.3.1 Overview 6.3.2 Climate and mass balance 6.3.3 Flow of inland ice 6.3.4 Ice streams 6.3.5 Hydrology and subglacial lakes 6.3.6 Ice stream stagnation and reactivation 6.3.7 Stability of the West Antarctic Ice Sheet 7 GLACIERS AND SEA LEVEL CHANGE 7.1 Introduction 7.2 Causes of sea-level change 7.2.1 Overview 7.2.2 Glacio-eustasy and global ice volume 7.2.3 Glacio-isostasy and ice sheet loading 7.3 Sea-level change over glacial-interglacial cycles 7.3.1 Ice sheet fluctuations and eustatic sea-level change 7.3.2 Sea-level histories in glaciated regions 7.4 Glaciers and recent sea-level change 7.4.1 Recorded sea-level change 7.4.2 Global glacier mass balance 7.5 Future sea-level change 7.5.1 IPCC climate and sea-level projections 7.5.2 Predicting the glacial contribution to sea-level change PART TWO GLACIATION 8 EROSIONAL PROCESSES, FORMS AND LANDSCAPES 8.1 Introduction 8.2 Subglacial erosion 8.2.1 Rock fracture: general principles 8.2.2 Abrasion 8.2,3 Quarrying 8.2.4 Erosion beneath cold ice 8.2.5 Erosion of soft beds 8.3 Small-scale erosional forms 8.3.1 Striae and polished surfaces 8.3.2 Rat tails 8.3.3 Chattermarks, gouges and fractures 8.3.4 P-forms 8.4 Intermediate-scale erosional forms 8.4.1 Roches moutonnees 8.4.2 Whalebacks and rock drumlins 8.4.3 Crag and tails 8.4.4 Channels 8.5 Large-scale erosional landforms 8.5.1 Rock basins and overdeepenings 8.5.2 Basins and overdeepenings in soft sediments 8.5.3 Troughs and fjords 8.5.4 Cirques 8.5.5 Strandflats 8.6 Landscapes of glacial erosion 8.6.1 Areal scouring 8.6.2 Selective linear erosion 8.6.3 Landscapes of little or no glacial erosion 8.6.4 Alpine landscapes 8.6.5 Cirque landscapes 8.6.6 Continent-scale patterns of erosion 9 DEBRIS ENTRAPMENT AND TRANSPORT 9.1 Introduction 9.2 Approaches to the study of glacial sediments 9.2.1 The glacial debris cascade 9.2.2 Spatial hierarchies of sediments and landforms 9.3 Glacial debris entrainment 9.3.1 Supraglacial debris entrainment 9.3.2 Incorporation of debris into basal ice 9.4 Debris transport and release 9.4.1 Subglacial transport 9.4.2 High-level debris transport 9.4.3 Glacifluvial transport 9.5 Effects of transport on debris 9.5.1 Granulometry 9.5.2 Clast morphology 9.5.3 Particle micromorphology 10 GLACIGENIC SEDIMENTS AND DEPOSITIONAL PROCESSES 10.1 Introduction 10.2 Sediment description and classification 10.2.1 Sediment description 10.2.2 Deformation structures 10.2.3 Primary and secondary deposits 10.3 Primary glacigenic deposits (till) 10.3.1 Overview 10.3.2 Processes of subglacial till formation 10.3.3 Glacitectonite 10.3.4 Subglacial traction till 10.4 Glacifluvial deposits 10.4.1 Terminology and classification of glacifluvial sediments 10.4.2 Plane bed deposits 10.4.3 Ripple cross-laminated facies 10.4.4 Dunes 10.4.5 Antidunes 10.4.6 Scour and minor channel fills 10.4.7 Gravel sheets 10.4.8 Silt and mud drapes 10.4.9 Hyperconcentrated flow deposits 10.5 Gravitational mass movement deposits and syn-sedimentary deformation structures 10.5.1 Overview 10.5.2 Fall deposits 10.5.3 Slide and slump deposits 10.5.4 Debris (sediment-gravity) flow deposits 10.5.5
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Keywords: Aragonite saturation state; Area; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification intensity; Calcification intensity, standard error; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chamber number; Chromista; Coast and continental shelf; Experiment; Foraminifera; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Globigerinoides ruber; Growth/Morphology; Heterotrophic prokaryotes; Laboratory experiment; Magnesium/Calcium ratio; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard error; Red Sea; Salinity; Single species; Species; Temperate; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 264 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-19
    Description: La Siguanea inlet, one of the two inlets present in the Gulf of Batabanó, contains essential habitats such as seagrass beds and mangroves. However, it has been poorly studied and currently there is little information about the biological diversity in the area. The aim of this study was to make the first check list of fishes on this region of the Cuban archipelago. We used complementary methodologies such as multiple seine nets, gill net, drum lines, visual census and underwater video census. The inventory recorded 122 species of fishes distributed in 53 families. The best represented families were Haemulidae, Lutjanidae, Scaridae, Carangidae, Monacanthidae and Gerreidae. This finding coincided partially with similar studies done in other Cuban shelf areas, although the order of these may vary. During the surveys a high proportion of juvenile fishes was found, which suggests a possible nursery site that could be playing an important role in fish stocks in the area. This result contributes to raise the knowledge about marine biodiversity in Cuba and also for the Caribbean, providing a baseline of fish for the area. In this work we found a high diversity of fishes in La Siguanea inlet, as well as a high proportion of juveniles. Future studies that explore the composition and structure of fish stocks in the area are required; as well as studies on the possible connectivity between this area and the reefs in Punta Francés. Allowing a better understanding of ecological processes in the area, and in turn a better use and management of these natural resources.
    Description: La Ensenada de la Siguanea es una de las dos ensenadas presentes en el Golfo de Batabanó, en la cual se pueden encontrar importantes hábitats para el desarrollo de los peces como son los pastizales y los manglares. No obstante, esta ensenada ha sido poco estudiada y se cuenta con poca información sobre la diversidad biológica en el área. El objetivo de este estudio fue realizar, por primera vez para el área, un inventario de las especies de peces. Se emplearon diferentes metodologías de muestreo como redes de pesca, palangres, censos visuales y videos bajoel agua. Se inventariaron 122 especies de peces distribuidas en 53 familias. Las familias más diversas fueron Haemulidae, Lutjanidae, Scaridae, Carangidae, Monacanthidae y Gerreidae, coincidiendo parcialmente con resultados previos en otras regiones del país, aunque su orden puede variar. En los muestreos se encontró una alta proporción de juveniles de peces, sugiriendo que esta es una zona de crianza, que puede tener un rol importante en las poblaciones de peces en el área. Estos resultados contribuyen al conocimiento de la diversidad marina en Cuba y el Caribe, proporcionado una línea base de la ictiofauna para la Ensenada de la Siguanea. En este trabajo se encontró una alta diversidad de de peces en la Siguanea, así como un elevada proporción de juveniles. Se requieren de estudios futuros que exploren la composición y estructura de las poblaciones de peces en el área, así como la posible conectividad entre esta área y el Parque Nacional Punta Francés. Esto permitirá un mejor entendimiento de los procesos ecológicos en el área, y un mejor uso y manejo de los recursos naturales.
    Description: Published
    Keywords: Diversidad ; Peces ; Inventario ; Diversity ; Fishes ; Inventory
    Repository Name: AquaDocs
    Type: Journal Contribution , Not Known
    Format: pp. 29-45
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 55 (1990), S. 1698-1700 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 55 (1990), S. 2280-2282 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 56 (1991), S. 4576-4579 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 56 (1991), S. 6744-6746 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 57 (1992), S. 1067-1069 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...