ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (52)
  • 2015-2019  (31)
  • 2010-2014  (16)
  • 2005-2009  (5)
Collection
Years
Year
  • 1
    Publication Date: 2015-09-19
    Description: Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1–1.5 M . We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5 M having power indices of 0.72 ± 0.08 and 1.25 ± 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-27
    Description: Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1–1.5 M . We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5 M having power indices of 0.72 ± 0.08 and 1.25 ± 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-24
    Description: The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should be observable in their surface magnetic fields. Here we present a study aimed at observing the evolution of these magnetic fields through this critical time period. We observed stars in open clusters and stellar associations of known ages, and used Zeeman Doppler imaging to characterize their complex magnetic large-scale fields. Presented here are results for 15 stars, from five associations, with ages from 20 to 250 Myr, masses from 0.7 to 1.2 M , and rotation periods from 0.4 to 6 d. We find complex large-scale magnetic field geometries, with global average strengths from 14 to 140 G. There is a clear trend towards decreasing average large-scale magnetic field strength with age, and a tight correlation between magnetic field strength and Rossby number. Comparing the magnetic properties of our zero-age main-sequence sample to those of both younger and older stars, it appears that the magnetic evolution of solar-type stars during the pre-main sequence is primarily driven by structural changes, while it closely follows the stars’ rotational evolution on the main sequence.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-21
    Description: We present radial velocity measurements of a sample of M5V–M9V stars from our Red-Optical Planet Survey, operating at 0.652–1.025 μm. Radial velocities for 15 stars, with rms precision down to 2.5 m s –1 over a week-long time-scale, are achieved using thorium–argon reference spectra. We are sensitive to planets with m p sin i ≥ 1.5 M (3 M at 2) in the classical habitable zone, and our observations currently rule out planets with m p sin i 〉 0.5 M J at 0.03 au for all our targets. A total of 9 of the 15 targets exhibit rms 〈 16 m s –1 , which enables us to rule out the presence of planets with m p sin i 〉 10 M in 0.03 au orbits. Since the mean rotation velocity is of the order of 8 km s –1 for an M6V star and 15 km s –1 for M9V, we avoid observing only slow rotators that would introduce a bias towards low axial inclination ( i 〈〈 90°) systems, which are unfavourable for planet detection. Our targets with the highest v sin  i values exhibit radial velocities significantly above the photon-noise-limited precision, even after accounting for v sin  i . We have therefore monitored stellar activity via chromospheric emission from the Hα and Ca ii infrared triplet lines. A clear trend of log 10 ( L Hα / L bol ) with radial velocity rms is seen, implying that significant starspot activity is responsible for the observed radial velocity precision floor. The implication that most late M dwarfs are significantly spotted, and hence exhibit time varying line distortions, indicates that observations to detect orbiting planets need strategies to reliably mitigate against the effects of activity-induced radial velocity variations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-19
    Description: We present the results of a major high-resolution spectropolarimetric BCool project magnetic survey of 170 solar-type stars. Surface magnetic fields were detected on 67 stars, with 21 classified as mature solar-type stars, a result that increases by a factor of 4 the number of mature solar-type stars on which magnetic fields have been observed. In addition, a magnetic field was detected for 3 out of 18 of the subgiant stars surveyed. For the population of K-dwarfs, the mean value of | B l | (| B l | mean ) was also found to be higher (5.7 G) than | B l | mean measured for the G-dwarfs (3.2 G) and the F-dwarfs (3.3 G). For the sample as a whole, | B l | mean increases with rotation rate and decreases with age, and the upper envelope for | B l | correlates well with the observed chromospheric emission. Stars with a chromospheric S-index greater than about 0.2 show a high magnetic field detection rate and so offer optimal targets for future studies. This survey constitutes the most extensive spectropolarimetric survey of cool stars undertaken to date, and suggests that it is feasible to pursue magnetic mapping of a wide range of moderately active solar-type stars to improve our understanding of their surface fields and dynamos.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-20
    Description: Theoretical predictions suggest that the distribution of planets in very young stars could be very different to that typically observed in Gyr old systems that are the current focus of radial velocity surveys. However, the detection of planets around young stars is hampered by the increased stellar activity associated with young stars, the signatures of which can bias the detection of planets. In this paper, we place realistic limitations on the possibilities for detecting planets around young active G and K dwarfs. The models of stellar activity based on tomographic imaging of the G dwarf HD 141943 and the K1 dwarf AB Dor also include contributions from plage and many small random starspots. Our results show that the increased stellar activity levels present on young solar-type stars strongly impacts the detection of Earth-mass and Jupiter-mass planets and that the degree of activity jitter is directly correlated with stellar v sin i . We also show that for G and K dwarfs, the distribution of activity in individual stars is more important than the differences in induced radial velocities as a function of spectral type. We conclude that Jupiter-mass planets can be detected close-in around fast-rotating young active stars, Neptune-mass planets around moderate rotators and that Super-Earths are only detectable around very slowly rotating stars. The effects of an increase in stellar activity jitter by observing younger stars can be compensated for by extending the observational base-line to at least 100 epochs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-30
    Description: We present new wind models for Boötis ( Boo), a hot-Jupiter-host-star whose observable magnetic cycles makes it a uniquely useful target for our goal of monitoring the temporal variability of stellar winds and their exoplanetary impacts. Using spectropolarimetric observations from May 2009 to January 2015, the most extensive information of this type yet available, to reconstruct the stellar magnetic field, we produce multiple 3D magnetohydrodynamic stellar wind models. Our results show that characteristic changes in the large-scale magnetic field as the star undergoes magnetic cycles produce changes in the wind properties, both globally and locally at the position of the orbiting planet. Whilst the mass loss rate of the star varies by only a minimal amount (~4 per cent), the rates of angular momentum loss and associated spin-down time-scales are seen to vary widely (up to ~140 per cent), findings consistent with and extending previous research. In addition, we find that temporal variation in the global wind is governed mainly by changes in total magnetic flux rather than changes in wind plasma properties. The magnetic pressure varies with time and location and dominates the stellar wind pressure at the planetary orbit. By assuming a Jovian planetary magnetic field for Boo b, we nevertheless conclude that the planetary magnetosphere can remain stable in size for all observed stellar cycle epochs, despite significant changes in the stellar field and the resulting local space weather environment.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-22
    Description: We present six epochs of spectropolarimetric observations of the hot-Jupiter-hosting star Boötis that extend the exceptional previous multiyear data set of its large-scale magnetic field. Our results confirm that the large-scale magnetic field of Boötis varies cyclicly, with the observation of two further magnetic reversals; between 2013 December and 2014 May and between 2015 January and March. We also show that the field evolves in a broadly solar-type manner in contrast to other F-type stars. We further present new results which indicate that the chromospheric activity cycle and the magnetic activity cycles are related, which would indicate a very rapid magnetic cycle. As an exemplar of long-term magnetic field evolution, Boötis and this long-term monitoring campaign presents a unique opportunity for studying stellar magnetic cycles.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-07
    Description: Zeeman–Doppler imaging (ZDI) has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period–Rossby number plane or the cycle period–rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained from ZDI and activity cycles.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-01
    Description: Whether BP Piscium (BP Psc) is either a pre-main sequence T Tauri star at d 80 pc, or a post-main sequence G giant at d 300 pc is still not clear. As a first-ascent giant, it is the first to be observed with a molecular and dust disc. Alternatively, BP Psc would be among the nearest T Tauri stars with a protoplanetary disc (PPD). We investigate whether the disc geometry resembles typical PPDs, by comparing polarimetric images with radiative transfer models. Our Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/Zurich IMaging Polarimeter (ZIMPOL) observations allow us to perform polarimetric differential imaging, reference star differential imaging, and Richardson–Lucy deconvolution. We present the first visible light polarization and intensity images of the disc of BP Psc. Our deconvolution confirms the disc shape as detected before, mainly showing the southern side of the disc. In polarized intensity the disc is imaged at larger detail and also shows the northern side, giving it the typical shape of high-inclination flared discs. We explain the observed disc features by retrieving the large-scale geometry with mcmax radiative transfer modelling, which yields a strongly flared model, atypical for discs of T Tauri stars.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...