ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-09-12
    Description: In this study, a revised method for typhoon precipitation probability forecast, based on the frequencymatching method, is developed by combining the screening and the neighborhood methods. The frequency of the high-resolution precipitation forecasts is used as the reference frequency, and the frequency of the lowresolution ensemble forecasts is used as the forecast frequency. Based on frequency–matching method, the frequency of rainfall above the rainstorm magnitude increases. The forecast members are then selected by using the typhoon tracks of the short-term predictions, and the precipitation probability is calculated for each member using a combination of the neighbor and the traditional probability statistical methods. Moreover, four landfalling typhoons (i.e., STY Lekima and STS Bailu in 2019, and TY Hagupit and Higos in 2020) were chose to test the rainfall probability forecast. The results show that the method performs well with respect to the forecast rainfall area and magnitude for the four typhoons. The Brier and Brier skill scores are almost entirely positive for the probability forecast of 0.1–250 mm rainfall during Bailu, Hagupit and Higos (except for 0.1mm of Hagupit), and for 〈 100 mm rainfall (except for 25 mm) during Lekima.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-09-12
    Description: This study investigates interagency discrepancies among best-track estimates of tropical cyclone (TC) intensity in the western North Pacific, provided by the Joint Typhoon Warning Center (JTWC), the China Meteorological Administration (CMA), and the Regional Specialized Meteorological Center (RSMC) Tokyo during 2013–2019. The results reveal evident differences in maximum wind speed (MSW) estimates, where linear systematic differences are significant. However, the Dvorak parameter (CI) numbers derived from the MSWs reported by the three agencies are internally consistent. Further analysis suggests that the remained CI discrepancies are related to differences in the estimation of intensity trends, initial intensities, and TC positions among these datasets. In addition, the CI estimates provided by the JTWC for TCs over the open ocean are generally higher than those reported by the CMA and RSMC. However, the estimates from CMA and RSMC tend to give higher TC intensities for the TCs in the mainland and coastal areas of China and Japan, especially, than those over the open ocean with the same intensity in JTWC dataset. This pattern potentially reflects the extensive use of surface observations by these two agencies for landfalling and offshore TCs. These results may help the research community to get more accurate details about the TCs in WNP from the best track datasets of different agencies.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...