ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (7)
  • 1
    Publication Date: 2023-02-08
    Description: Key points: • Detectable self-potential and deformation anomalies result from poroelastic responses of volcanicaquifers by subsurface pressurization • Self-potential amplitudes and their polarity are sensitive to magmatic stressing and pressure sourceorientation (dike vs. sill) • Our multi-physics approach provides new insights into pre-eruptive processe Pre‐eruptive electrical signals at active volcanoes are generally interpreted in terms of electrokinetic processes. Spatio‐temporal self‐potential (SP) signals can be caused by strain‐induced fluid flow in volcanic aquifers, however, previous studies lack the quantitative assessments of these phenomena and the underpinning poroelastic responses. Here we use Finite‐Element Analysis to study poroelastic responses induced by subsurface stressing from sill and dike sources by jointly solving for ground displacements, pore pressure and SP signals. We evaluate the influence of pressure source orientation on the poroelastic response in two different volcanic aquifers (pyroclastic and lava flow) to provide insights on emergent geodetic and SP signals and their sensitivity to governing parameters. Strain‐induced SP amplitudes deduced from a reference parameter set vary in both aquifer models and are of negative polarity (‐0.35 mV and ‐22.6 mV) for a pressurized dike and of positive polarity (+4 mV and +20 mV) for a pressurized sill. Importantly, we find uniquely different SP and ground displacement patterns from either sill or dike intrusions. Our study shows that SP signals are highly sensitive to the subsurface Young's modulus, streaming potential coupling coefficient and electrical conductivity of the poroelastic domains. For the set of parameters tested, the dike model predicts SP amplitudes of up to ‐947 mV which are broadly representative of recorded amplitudes from active volcanoes. Our study demonstrates that electrokinetic processes reflect magma‐induced stress and strain variations and highlights the potential of joint geodetic and SP studies to gain new insights on causes of volcanic unrest.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of two years (2004-2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While early warning systems are frequently used to predict the magnitude, location and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services or financial loss. Complementing early warning systems with impact forecasts has a two‐fold advantage: it would provide decision makers with richer information to take informed decisions about emergency measures, and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multi‐hazard early warning systems. This review discusses the state‐of‐the‐art in impact forecasting for a wide range of natural hazards. We outline the added value of impact‐based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe. Plain language summary Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While such systems are frequently used to predict the magnitude, location and timing of potentially damaging events, they rarely provide impact estimates, such as the expected physical damage, human consequences, disruption of services or financial loss. Extending hazard forecast systems to include impact estimates promises many benefits for the emergency phase, for instance, for organising evacuations. We review and compare the state‐of‐the‐art of impact forcasting across a wide range of natural hazards, and outline opportunities and key challenges for research and development of impact forecasting.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Over the last decade, field investigations, laboratory experiments, geophysical exploration and petrological, geochemical and numerical modelling have provided insight into the mechanisms of phreatic and hydrothermal eruptions. These eruptions are driven by sudden flashing of ground- or hydrothermal water to steam and are strongly influenced by the interaction of host rock and hydrothermal system. Aquifers hosted in volcanic edifices, calderas and rift environments can be primed for instability by alteration processes affecting rock permeability and/or strength, while magmatic fluid injection(s), earthquakes or other subtle triggers can promote explosive failure. Gas emission, ground deformation and seismicity may provide short- to medium-term forerunner signals of these eruptions, yet a definition of universal precursors remains a key challenge. Looking forward in the next 10 years, improved warning and hazard assessment will require integration of field and experimental data with models combining case studies, as well as development of new monitoring methods integrated by machine learning approaches.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: In July and August 2019, two paroxysmal eruptions dramatically changed the morphology of the crater terrace that hosts the active vents of Stromboli volcano (Italy). Here, we document these morphological changes, by using 2259 UAS-derived photographs from eight surveys and Structure-from-Motion (SfM) photogrammetric techniques, resulting in 3D point clouds, orthomosaics, and digital surface models (DSMs) with resolution ranging from 8.1 to 12.4 cm/pixel. We focus on the morphological evolution of volcanic features and volume changes in the crater terrace and the upper part of the underlying slope (Sciara del Fuoco). We identify both crater terrace and lava field variations, with vents shifting up to 47 m and the accumulation of tephra deposits. The maximum elevation changes related to the two paroxysmal eruptions (in between May and September 2019) range from +41.4 to −26.4 m at the lava field and N crater area, respectively. Throughout September 2018–June 2020, the total volume change in the surveyed area was +447,335 m3. Despite Stromboli being one of the best-studied volcanoes worldwide, the UAS-based photogrammetry products of this study provide unprecedented high spatiotemporal resolution observations of its entire summit area, in a period when volcanic activity made the classic field inspections and helicopter overflights too risky. Routinely applied UAS operations represent an effective and evolving tool for volcanic hazard assessment and to support decision-makers involved in volcanic surveillance and civil protection operations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-14
    Description: A detailed mapping of volcanic ballistic projectiles emplaced in a defined area, represents the starting point to derive preparatory data in hazard and risk studies of ballistics phenomena. Considering as case study the 3rd July 2019 paroxysmal eruption occurred at Stromboli volcano, we map and analyse at very high spatial resolution (8 cm) the distribution of the ballistic spatter clasts emplaced on the E flank of the volcano. The resulting map identifies and reproduces as geospatial polygon elements 152,228 spatter clasts with areal dimensions from 0.03 to 4.23 m2. Dispersed on 0.407 km2, the spatters cover an area of 29,000 m2 corresponding to an erupted products volume from 2.3 to 7.0 × 103 m3, calculated here for the first time. Spatial analyses indicate that the area mostly affected by the clasts emplacement is between N67.5 and N135 directions, identifying a preferential deposition between N112.50 and N123.75 directions. The clasts size distribution rapidly decreases with the size increase, highlighting a nearly constant ratio small/large clasts regardless the distance from the vent. Finally, additional investigations reveal that clasts dispersion parameters decrease progressively with the distance from the vent only along one direction (N67.5), highlighting how the morphology influences the deposition and remobilisation of mapped ballistics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-03
    Description: A detailed mapping of volcanic ballistic projectiles emplaced in a defined area, represents the starting point to derive preparatory data in hazard and risk studies of ballistics phenomena. Considering as case study the 3rd July 2019 paroxysmal eruption occurred at Stromboli volcano, we map and analyse at very high spatial resolution (8 cm) the distribution of the ballistic spatter clasts emplaced on the E flank of the volcano. The resulting map identifies and reproduces as geospatial polygon elements 152,228 spatter clasts with areal dimensions from 0.03 to 4.23 m2. Dispersed on 0.407 km2, the spatters cover an area of 29,000 m2 corresponding to an erupted products volume from 2.3 to 7.0 × 103 m3, calculated here for the first time. Spatial analyses indicate that the area mostly affected by the clasts emplacement is between N67.5 and N135 directions, identifying a preferential deposition between N112.50 and N123.75 directions. The clasts size distribution rapidly decreases with the size increase, highlighting a nearly constant ratio small/large clasts regardless the distance from the vent. Finally, additional investigations reveal that clasts dispersion parameters decrease progressively with the distance from the vent only along one direction (N67.5), highlighting how the morphology influences the deposition and remobilisation of mapped ballistics.
    Description: Published
    Description: 13465
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Stromboli ; ballistics ; high resolution mapping
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...