ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 (Finite-volumE Sea ice-Ocean Model) has the multi-resolution functionality typical of unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of the latest developments in the numerical-weather-prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable-resolution (25-125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other ongoing research activities with AWI-CM3. This includes the exploration of high and variable resolution and the development of a full Earth system model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above-CMIP6-average skills (where CMIP6 denotes Coupled Model Intercomparison Project phase 6) in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-05
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea‐surface salinity and sea‐level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea‐ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere‐ocean‐ice interaction occurs. One‐year‐long sea‐ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea‐ice concentration from 2011 to 2019 is calibrated by trend‐adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea‐ice edge raw forecast skill is within the range of operational global subseasonal‐to‐seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea‐ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Description: Plain Language Summary: Ocean data sparseness and systematic model errors pose problems for the initialization of coupled seasonal forecasts, especially in polar regions. Our global forecast system follows a seamless approach with refined ocean resolution in the Arctic. The new version presented here features higher computational efficiency and utilizes more ocean and sea‐ice observations. Ice‐edge forecasts outperform a climatological benchmark for about 1 month, comparable to established systems.
    Description: Key Points: We describe an upgrade of the AWI Coupled Prediction System with new ocean and atmosphere models and more observations assimilated. Independent evaluations show advances in the new version on the analysis of the sea‐ice and ocean states against the old one. Calibrated sea‐ice edge forecasts outperform a climatological benchmark for around 1 month in both hemispheres.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.org/10.5281/zenodo.6335383
    Description: https://github.com/FESOM/fesom2/releases/tag/AWI-CM3_v3.0
    Description: https://doi.org/10.5281/zenodo.6335498
    Description: https://oasis.cerfacs.fr/en/
    Description: https://doi.org/10.5281/zenodo.4905653
    Description: http://forge.ipsl.jussieu.fr/ioserver
    Description: https://doi.org/10.5281/zenodo.6335474
    Description: http://pdaf.awi.de/
    Description: https://doi.org/10.5281/zenodo.6481116
    Keywords: ddc:551.6 ; seamless sea ice forecast ; multivariate data assimilation ; forecast calibration ; spatial probability score
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-13
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Owing to the complicated spatial–temporal characteristics of East Asian precipitation (EAP), climate models have limited skills in simulating the modern Asian climate. This consequently leads to large uncertainties in simulations of the past EAP variation and future projections. Here, we explore the performance of the newly developed Alfred Wegener Institute Climate Model, version 3 (AWI‐CM3) in simulating the climatological summer EAP. To test whether the model's skill depends on its atmosphere resolution, we design two AWI‐CM3 simulations with different horizontal resolutions. The result shows that both simulations have acceptable performance in simulating the summer mean EAP, generally better than the majority of individual models participating in the Coupled Model Intercomparison Project (CMIP6). However, for the monthly EAP from June to August, AWI‐CM3 exhibits a decayed skill, which is due to the subseasonal movement of the western Pacific subtropical high bias. The higher‐resolution AWI‐CM3 simulation shows an overall improvement relative to the one performed at a relatively lower resolution in all aspects taken into account regarding the EAP. We conclude that AWI‐CM3 is a suitable tool for exploring the EAP for the observational period. Having verified the model's skill for modern climate, we suggest employing the AWI‐CM3, especially with high atmosphere resolution, both for applications in paleoclimate studies and future projections.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This figure shows the skill scores of AWI‐CM3 and CMIP6 models in simulating the climatological summer East Asian precipitation (EAP), which indicates that AWI‐CM3 simulations perform better than most CMIP6 individual models for the summer mean EAP, while AWI‐CM3's skills decay from June to August.〈boxed-text position="anchor" content-type="graphic" id="joc8075-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08998418:media:joc8075:joc8075-toc-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Climate Initiative REKLIM
    Description: Helmholtz Program
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
    Description: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05
    Description: http://aphrodite.st.hirosaki-u.ac.jp/products.html
    Description: https://jra.kishou.go.jp/JRA-55/index_en.html
    Description: https://esgf-node.llnl.gov/search/cmip6
    Keywords: ddc:551.6 ; AWI‐CM3 ; CMIP6 ; East Asia ; summer precipitation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: Comparing the output of general circulation models to observations is essential for assessing and improving the quality of models. While numerical weather prediction models are routinely assessed against a large array of observations, comparing climate models and observations usually requires long time series to build robust statistics. Here, we show that by nudging the large-scale atmospheric circulation in coupled climate models, model output can be compared to local observations for individual days. We illustrate this for three climate models during a period in April 2020 when a warm air intrusion reached the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the central Arctic. Radiosondes, cloud remote sensing and surface flux observations from the MOSAiC expedition serve as reference observations. The climate models AWI-CM1/ECHAM and AWI-CM3/IFS miss the diurnal cycle of surface temperature in spring, likely because both models assume the snowpack on ice to have a uniform temperature. CAM6, a model that uses three layers to represent snow temperature, represents the diurnal cycle more realistically. During a cold and dry period with pervasive thin mixed-phase clouds, AWI-CM1/ECHAM only produces partial cloud cover and overestimates downwelling shortwave radiation at the surface. AWI-CM3/IFS produces a closed cloud cover but misses cloud liquid water. Our results show that nudging the large-scale circulation to the observed state allows a meaningful comparison of climate model output even to short-term observational campaigns. We suggest that nudging can simplify and accelerate the pathway from observations to climate model improvements and substantially extends the range of observations suitable for model evaluation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-21
    Description: 〈jats:p〉Abstract. We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 (Finite-volumE Sea ice–Ocean Model) has the multi-resolution functionality typical of unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of the latest developments in the numerical-weather-prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable-resolution (25–125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other ongoing research activities with AWI-CM3. This includes the exploration of high and variable resolution and the development of a full Earth system model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above-CMIP6-average skills (where CMIP6 denotes Coupled Model Intercomparison Project phase 6) in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 14(12), ISSN: 1942-2466
    Publication Date: 2023-06-23
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea-surface salinity and sea-level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea-ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere-ocean-ice interaction occurs. One-year-long sea-ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea-ice concentration from 2011 to 2019 is calibrated by trend-adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational global subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea-ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3International Journal of Climatology, Wiley, pp. 1-16, ISSN: 0899-8418
    Publication Date: 2023-05-08
    Description: Owing to the complicated spatial–temporal characteristics of East Asian precipitation (EAP), climate models have limited skills in simulating the modern Asian climate. This consequently leads to large uncertainties in simulations of the past EAP variation and future projections. Here, we explore the performance of the newly developed Alfred Wegener Institute Climate Model,version 3 (AWI-CM3) in simulating the climatological summer EAP. To test whether the model's skill depends on its atmosphere resolution, we design two AWI-CM3 simulations with different horizontal resolutions. The result shows that both simulations have acceptable performance in simulating the summer mean EAP, generally better than the majority of individual models participating in the Coupled Model Intercomparison Project (CMIP6). However, for the monthly EAP from June to August, AWI-CM3 exhibits a decayed skill, which is due to the subseasonal movement of the western Pacific subtropical high bias. The higher-resolution AWI-CM3 simulation shows an overall improvement relative to the one performed at a relatively lower resolution in all aspects taken into account regarding the EAP. We conclude that AWI-CM3 is a suitable tool for exploring the EAP for the observational period. Having verified the model's skill for modern climate, we suggest employing the AWI-CM3, especially with high atmosphere resolution, both for applications in paleoclimate studies and future projections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-02
    Description: An oral presentation at () ISDA online event. Topic: Ocean Data Assimilation
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-31
    Description: Predictive skills of coupled sea-ice/ocean and atmosphere models are limited by the chaotic nature of the atmosphere. Assimilation of observational information on ocean hydrography and sea ice allows to obtain a coupled-system state that provides a basis for subseasonal-to-seasonal ocean and sea-ice forecast (Mu et al., 2022). However, if the atmosphere is not additionally constrained, the quasi-random atmospheric states within an ensemble forecast lead to a fast divergence of the ocean and sea-ice states, degrading the system’s performance with respect to the sea ice forecasts. As reported previously, imposing an additional constraint by nudging large-scale winds to the ERA5 reanalysis data (Sánchez-Benítez et al., 2021; Athanase et al., 2022) improves predictive skills of the AWI Coupled Prediction System (AWI-CPS, Mu et al. 2022) with regard to sea ice drift (Losa et al., 2023). Here we provide results based on a much more extensive set of ensemble-based data assimilation experiments spanning the time period from 2002 to 2023 and a series of long forecast experiments over 2010 – 2023, initialized in four different seasons. We compare the performance of forecasts initialized from two sets of data assimilation experiments, with and without atmospheric wind nudging. The additional relaxation of the large-scale atmospheric circulation to the ERA5 reanalysis data for the initialization leads to reasonable atmospheric forecast skill on weather timescales: Despite the simple technique, the coarse resolution compared to NWP systems, and the limited optimization efforts, 10-day forecasts of the 500 hPa geopotential height are about as skillful as the best performing NWP forecasts were about 10 –15 years ago. Among other aspects, this leads to significantly improved subseasonal-to-seasonal sea-ice concentration and thickness forecasts. Athanase, M., Schwager, M., Streffing, J., Andrés-Martínez, M., Loza, S., and Goessling, H.: Impact of the atmospheric circulation on the Arctic snow cover and ice thickness variability , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5836, https://doi.org/10.5194/egusphere-egu22-5836, 2022. Losa, S. N., Mu, L., Athanase, M., Streffing, J., Andrés-Martínez, M., Nerger, L., Semmler, T., Sidorenko, D., and Goessling, H. F.: Combining sea-ice and ocean data assimilation with nudging atmospheric circulation in the AWI Coupled Prediction System, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14227, https://doi.org/10.5194/egusphere-egu23-14227, 2023. Mu, L. , Nerger, L. , Streffing, J. , Tang, Q. , Niraula, B. , Zampieri, L., Loza, S. N. and Goessling, H. F. (2022): Sea‐Ice Forecasts With an Upgraded AWI Coupled Prediction System , Journal of Advances in Modeling Earth Systems, 14 (12) . doi: 10.1029/2022ms003176 Sánchez-Benítez, A. , Goessling, H. , Pithan, F. , Semmler, T. and Jung, T. (2022): The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging , Journal of Climate, 35 (8), pp. 2373-2390 . doi: 10.1175/JCLI-D-21-0573.1
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-21
    Description: Oral presentation at EGU GA 2023 (EGU23 14227)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/vnd.openxmlformats-officedocument.presentationml.presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...