ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Environment. ; Paleontology . ; Physical geography. ; Geology. ; Environmental Sciences. ; Paleontology. ; Earth System Sciences. ; Geology.
    Description / Table of Contents: 1. The climate system: its functioning and history -- 2. The changing face of the Earth throughout the ages -- 3. Introduction to geochronology -- 4. Carbon-14.
    Abstract: This two-volume book provides a comprehensive, detailed understanding of paleoclimatology beginning by describing the “proxy data” from which quantitative climate parameters are reconstructed and finally by developing a comprehensive Earth system model able to simulate past climates of the Earth. It compiles contributions from specialists in each field who each have an in-depth knowledge of their particular area of expertise. The first volume is devoted to “Finding, dating and interpreting the evidence”. It describes the different geo-chronological technical methods used in paleoclimatology. Different fields of geosciences such as: stratigraphy, magnetism, dendrochronology, sedimentology, are drawn from and proxy reconstructions from ice sheets, terrestrial (speleothems, lakes, and vegetation) and oceanic data, are used to reconstruct the ancient climates of the Earth. The second volume, entitled “Investigation into ancient climates,” focuses on building comprehensive models of past climate evolution. The chapters are based on understanding the processes driving the evolution of each component of the Earth system (atmosphere, ocean, ice). This volume provides both an analytical understanding of each component using a hierarchy of models (from conceptual to very sophisticated 3D general circulation models) and a synthetic approach incorporating all of these components to explore the evolution of the Earth as a global system. As a whole this book provides the reader with a complete view of data reconstruction and modeling of the climate of the Earth from deep time to present day with even an excursion to include impacts on future climate.
    Type of Medium: Online Resource
    Pages: XXIV, 478 p. 262 illus., 121 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030249823
    Series Statement: Frontiers in Earth Sciences,
    DDC: 333.7
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 9783030249823 (e-book)
    Description / Table of Contents: This two-volume book provides a comprehensive, detailed understanding of paleoclimatology beginning by describing the “proxy data” from which quantitative climate parameters are reconstructed and finally by developing a comprehensive Earth system model able to simulate past climates of the Earth. It compiles contributions from specialists in each field who each have an in-depth knowledge of their particular area of expertise. The first volume is devoted to “Finding, dating and interpreting the evidence”. It describes the different geo-chronological technical methods used in paleoclimatology. Different fields of geosciences such as: stratigraphy, magnetism, dendrochronology, sedimentology, are drawn from and proxy reconstructions from ice sheets, terrestrial (speleothems, lakes, and vegetation) and oceanic data, are used to reconstruct the ancient climates of the Earth. The second volume, entitled “Investigation into ancient climates,” focuses on building comprehensive models of past climate evolution. The chapters are based on understanding the processes driving the evolution of each component of the Earth system (atmosphere, ocean, ice). This volume provides both an analytical understanding of each component using a hierarchy of models (from conceptual to very sophisticated 3D general circulation models) and a synthetic approach incorporating all of these components to explore the evolution of the Earth as a global system. As a whole this book provides the reader with a complete view of data reconstruction and modeling of the climate of the Earth from deep time to present day with even an excursion to include impacts on future climate.
    Type of Medium: 12
    Pages: 1 Online-Ressource (xxiv, 478 Seiten) , Illustrationen, Diagramme
    ISBN: 9783030249823 , 978-3-030-24982-3
    ISSN: 1863-4621 , 1863-463X
    Series Statement: Frontiers in earth sciences
    Language: English
    Note: Contents Volume 1 1 The Climate System: Its Functioning and History / Sylvie Joussaume and Jean-Claude Duplessy 2 The Changing Face of the Earth Throughout the Ages / Frédéric Fluteau and Pierre Sepulchre 3 Introduction to Geochronology / Hervé Guillou 4 Carbon-14 / Martine Paterne, Élisabeth Michel, and Christine Hatté et Jean-Claude Dutay 5 The 40 K/ 40 Ar and 40 Ar/ 39 Ar Methods / Hervé Guillou, Sébastien Nomade, and Vincent Scao 6 Dating of Corals and Other Geological Samples via the Radioactive Disequilibrium of Uranium and Thorium Isotopes / Norbert Frank and Freya Hemsing 7 Magnetostratigraphy: From a Million to a Thousand Years / Carlo Laj, James E. T. Channell, and Catherine Kissel 8 Dendrochronology / Frédéric Guibal and Joël Guiot 9 The Dating of Ice-Core Archives / Frédéric Parrenin 10 Reconstructing the Physics and Circulation of the Atmosphere / Valérie Masson-Delmotte and Joël Guiot 11 Air-Ice Interface: Polar Ice / Valérie Masson-Delmotte and Jean Jouzel 12 Air-Vegetation Interface: Pollen / Joël Guiot 13 Ground-Air Interface: The Loess Sequences, Markers of Atmospheric Circulation / Denis-Didier Rousseau and Christine Hatté 14 Air-Ground Interface: Reconstruction of Paleoclimates Using Speleothems / Dominique Genty and Ana Moreno 15 Air-Interface: d18O Records of Past Meteoric Water Using Benthic Ostracods from Deep Lakes / Ulrich von Grafenstein and Inga Labuhn 16 Vegetation-Atmosphere Interface: Tree Rings / Joël Guiot and Valérie Daux 17 Air-Vegetation Interface: An Example of the Use of Historical Data on Grape Harvests / Valérie Daux 18 Air-Ground Interface: Sediment Tracers in Tropical Lakes / David Williamson 19 Air-water Interface: Tropical Lake Diatoms and Isotope Hydrology Modeling / Florence Sylvestre, Françoise Gasse, Françoise Vimeux, and Benjamin Quesada 20 Air-Ice Interface: Tropical Glaciers / Françoise Vimeux 21 Climate and the Evolution of the Ocean: The Paleoceanographic Data / Thibaut Caley, Natalia Vázquez Riveiros, Laurent Labeyrie, Elsa Cortijo, and Jean-Claude Duplessy Volume 2 22 Climate Evolution on the Geological Timescale and the Role of Paleogeographic Changes / Frédéric Fluteau and Pierre Sepulchre 23 Biogeochemical Cycles and Aerosols Over the Last Million Years / Nathaelle Bouttes, Laurent Bopp, Samuel Albani, Gilles Ramstein, Tristan Vadsaria, and Emilie Capron 24 The Cryosphere and Sea Level / Catherine Ritz, Vincent Peyaud, Claire Waelbroeck, and Florence Colleoni 25 Modeling and Paleoclimatology / Masa Kageyama and Didier Paillard 26 The Precambrian Climate / Yves Goddéris, Gilles Ramstein, and Guillaume Le Hir 27 The Phanerozoic Climate / Yves Goddéris, Yannick Donnadieu, and Alexandre Pohl 28 Climate and Astronomical Cycles / Didier Paillard 29 Rapid Climate Variability: Description and Mechanisms / Masa Kageyama, Didier M. Roche, Nathalie Combourieu Nebout, and Jorge Alvarez-Solas 30 An Introduction to the Holocene and Anthropic Disturbance / Pascale Braconnot and Pascal Yiou 31 From the Climates of the Past to the Climates of the Future / Sylvie Charbit, Nathaelle Bouttes, Aurélien Quiquet, Laurent Bopp, Gilles Ramstein, Jean-Louis Dufresne, and Julien Cattiaux
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, ∼ 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org, last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 ∘C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model–data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...