ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-04
    Description: Varved lake sediments provide long climatic records with high temporal resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables to explore the database of varved lake sediments using a connected data-model and can generate a state-of-the-art graphic representation of multi-site comparison. This allows to reassess existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits to explore varve thickness data. In this paper, we report in detail on the data mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies as well as the technical infrastructure of the database. Additional paleoclimate proxy data will be provided in forthcoming updates. The VARDA graph-database and user interface can be accessed online at https://varve.gfz-potsdam.de, all datasets of version 1.0 are available at http://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-06
    Description: Abstract
    Description: The dataset presented here encompasses the results of the geochemical analyses of water and recent carbonate samples collected in the El Peinado basin located in the Southern Puna Plateau in Catamarca, Argentina. This system formed by the hypersaline lake Laguna del Peinado, numerous hydrothermal springs, and the small hypersaline lake Laguna Turquesa, provides a natural laboratory to study carbonate formation and the mechanisms that control the incorporation of various elements and isotopes into their structure under a broad range of geochemical conditions. Geochemical analyses include data on the physicochemical parameters, elemental, and isotopic (δ18O, δ2H, δ11B) composition of the waters, and data on the elemental and isotopic (δ18O, δ13C, δ11B) composition of the carbonates. These data allowed us to calculate element partition coefficients and isotopic fractionation between coupled water-carbonate samples from this natural setting, which are also included here. This dataset also includes the results of water modelling using the software PHREEQC, which contains data on the chemical speciation of carbon and boron, the species contributing to total alkalinity, and mineral saturation indices. This information is useful for all those dealing with geochemistry of hypersaline lakes, geochemistry of continental carbonates, as well as paleoenvironmental and paleoclimatic studies using lake carbonates as archives. These data correspond to the research article “On the origin and processes controlling the elemental and isotopic composition of carbonates in hypersaline Andean lakes”. The full description of the data is provided in the data description file.
    Description: Methods
    Description: Sampling method During fieldwork in January 2019, November 2019 and February 2021 (austral spring-summer), water samples were collected for isotopic and elemental analyses from the main water body Laguna del Peinado, the smaller Laguna Turquesa, the inflowing hydrothermal springs, and the wetlands. Rainwater was sampled in the nearest town, Antofagasta de la Sierra (3320 m a.s.l.) approximately 80 km to the NE and snow was collected at nearly 5000 m a.s.l., 17 km SE of the lake. For elemental analyses, water samples were filtered and an aliquot was acidified for metals determinations. Short sediment cores (〈 1 m) were recovered from Laguna del Peinado using a raft equipped with an Uwitec coring device. Carbonate and surface sediment samples were collected from the lakes, hot springs, and catchment area, packed in polyethylene vials and plastic bags, and stored at 4°C.
    Keywords: lacustrine carbonates ; evaporitic enrichment ; brine-carbonate chemistry ; boron isotopes ; partitioning coefficients ; isotopic fractionation ; hot springs ; Altiplano-Puna Plateau ; compound material 〉 sedimentary material 〉 carbonate sedimentary material ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 SPRINGS ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 LAKES ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 SURFACE WATER CHEMISTRY ; physical process 〉 evaporation
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-29
    Description: Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p 〈 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter—when the water column is mixed—picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-18
    Description: Sedimentary DNA-based studies revealed the effects of human activity on lake cyanobacteria communities over the last centuries, yet we continue to lack information over longer timescales. Here, we apply high-resolution molecular analyses on sedimentary ancient DNA to reconstruct the history of cyanobacteria throughout the Holocene in a lake in north-eastern Germany. We find a substantial increase in cyanobacteria abundance coinciding with deforestation during the early Bronze Age around 4000 years ago, suggesting increased nutrient supply to the lake by local communities settling on the lakeshore. The next substantial human-driven increase in cyanobacteria abundance occurred only about a century ago due to intensified agricultural fertilisation which caused the dominance of potentially toxic taxa (e.g., Aphanizomenon). Our study provides evidence that humans began to locally impact lake ecology much earlier than previously assumed. Consequently, managing aquatic systems today requires awareness of the legacy of human influence dating back potentially several millennia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...