ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Volcanic plumes are common and far-reaching manifestations of volcanic activity during and between eruptions. Observations of the rate of emission and composition of volcanic plumes are essential to recognize and, in some cases, predict the state of volcanic activity. Measurements of the size and location of the plumes are important to assess the impact of the emission from sporadic or localized events to persistent or widespread processes of climatic and environmental importance. These observations provide information on volatile budgets on Earth, chemical evolution of magmas, and atmospheric circulation and dynamics. Space-based observations during the last decades have given us a global view of Earth's volcanic emission, particularly of sulfur dioxide (SO2). Although none of the satellite missions were intended to be used for measurement of volcanic gas emission, specially adapted algorithms have produced time-averaged global emission budgets. These have confirmed that tropospheric plumes, produced from persistent degassing of weak sources, dominate the total emission of volcanic SO2. Although space-based observations have provided this global insight into some aspects of Earth's volcanism, it still has important limitations. The magnitude and short-term variability of lower-atmosphere emissions, historically less accessible from space, remain largely uncertain. Operational monitoring of volcanic plumes, at scales relevant for adequate surveillance, has been facilitated through the use of ground-based scanning differential optical absorption spectrometer (ScanDOAS) instruments since the beginning of this century, largely due to the coordinated effort of the Network for Observation of Volcanic and Atmospheric Change (NOVAC). In this study, we present a compilation of results of homogenized post-analysis of measurements of SO2 flux and plume parameters obtained during the period March 2005 to January 2017 of 32 volcanoes in NOVAC. This inventory opens a window into the short-term emission patterns of a diverse set of volcanoes in terms of magma composition, geographical location, magnitude of emission, and style of eruptive activity. We find that passive volcanic degassing is by no means a stationary process in time and that large sub-daily variability is observed in the flux of volcanic gases, which has implications for emission budgets produced using short-term, sporadic observations. The use of a standard evaluation method allows for intercomparison between different volcanoes and between ground- and space-based measurements of the same volcanoes. The emission of several weakly degassing volcanoes, undetected by satellites, is presented for the first time. We also compare our results with those reported in the literature, providing ranges of variability in emission not accessible in the past. The open-access data repository introduced in this article will enable further exploitation of this unique dataset, with a focus on volcanological research, risk assessment, satellite-sensor validation, and improved quantification of the prevalent tropospheric component of global volcanic emission.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2024-01-12
    Description: Petrology and fluid inclusions (FI) geochemistry are increasingly used in tandem to constrain the compositional features and evolution of the lithospheric mantle. In this study, we combine petrography and mineral chemistry with analyses of noble gases (He, Ne and Ar) and CO2 in olivine, orthopyroxene- and clinopyroxene-hosted FI, as well as radiogenic isotope (Sr-Nd-Pb) systematics of ultramafic xenoliths collected at La Grille volcano in Grande Comore Island, aiming at better characterizing one of the most enigmatic and controversial portions of the western Indian Ocean lithospheric mantle. Xenoliths have been divided in three groups on the basis of their textural features: Group 1 (Opx-bearing), Group 2 (Opx-free) and Group 3 (Cumulate). Overall, petrographic observations and mineral phase compositions indicate that the sampled lithospheric portion experienced variable degrees of melting (from 5% to 35%), recorded by Group 1 most refractory harzburgites and lherzolites, as well as modal metasomatic processes as evidenced by the crystallization of cpx at the expense of opx in Group 1 fertile lherzolites and wehrlite and by Group 2 xenoliths. Crystallization of slightly oversaturated basic silicate melts seems also to have occurred, as shown by Group 3 xenoliths. A positive trend between temperature and ƒO2 is evident, with Group 2 and 3 xenoliths testifying for hotter and more oxidised conditions than Group 1. The variability of the 4He/40Ar* ratio (0.02–0.39) in Group 1, significantly below typical values of a fertile mantle (4He/40Ar* = 1–5), can be explained by the variable degrees of partial melting coupled to metasomatic enrichment that may account for modifying 4He/40Ar*, as also indicated by the mineral composition. He-Ar-CO2 relationships support the presence of a metasomatic CO2-rich process post-dating the melt extraction and the cumulate formation. The air-corrected 3He/4He isotopic ratios (6.30 to 7.36 Ra) are intermediate between the MORB mantle signature (8 ± 1Ra) and the SCLM (6.1 ± 0.9 Ra). The Ne and Ar isotopic signatures (20Ne/22Ne, 21/Ne/22Ne and 40Ar/36Ar) are consistent with mixing between an air-derived component and a MORB-like mantle, supporting the hypothesis for a lithospheric origin of the Comoros magmas, and arguing against any deep mantle plume-related contribution. This is also corroborated by combining Ne with He isotopes, showing that La Grille ultramafic xenoliths are far from the typical plume-type compositions. Sr-Nd-Pb isotope systematics in opx and cpx from La Grille additionally support a MORB-type signature for the lithospheric mantle beneath the area.
    Description: Published
    Description: 107406
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Mantle xenoliths ; Noble gases ; Fluid inclusions ; Radiogenic isotopes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-18
    Description: The Comoros archipelago is an active geodynamic region located in theMozambique Channel between East continental Africa andMadagascar. The archipelago results from intra-plate volcanism, the most recent eruptions having occurred on the youngest island of Grande Comore and on the oldest one of Mayotte. Since 2018, the eastern submarine flank of Mayotte has been the site of one of the largest recent eruptive events on Earth in terms of erupted lava volume. On land, the most recent volcanic activity occurred in Holocene on the eastern side of Mayotte, corresponding to the small Petite Terre Island,where twomain and persistent gas seep areas are present (Airport Beach, namely BAS, and Dziani Dzaha intracrateric lake). The large submarine eruption at the feet of Mayotte (50 km offshore; 3.5 km b.s.l.) is associated with deep (mantle level) seismic activity closer to the coast (5–15 km offshore) possibly corresponding to a single and large magmatic plumbing system. Our study aims at characterizing the chemical and isotopic composition of gas seeps on land and assesses their potential link with the magmatic plumbing system feeding the Mayotte volcanic ridge and the recent submarine activity. Data from bubbling gases collected between 2018 and 2021 are discussed and compared with older datasets acquired between 2005 and 2016 from different research teams. The relation between 3He/4He and 13C-CO2 shows a clear magmatic origin for Mayotte bubbling gases, while the variable proportions and isotopic signature of CH4 is related to the occurrence of both biogenic and abiogenic sources of methane. Our new dataset points to a time-decreasing influence of the recent seismo-volcanic activity at Mayotte on the composition of hydrothermal fluids on land, whose equilibriumtemperature steadily decreases since 2018. The increased knowledge on the gas-geochemistry at Mayotte makes the results of this work of potential support for volcanic and environmental monitoring programs
    Description: Published
    Description: 275-298
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Gas-geochemistry ; Hydrothermal system ; Biogenic vs abiogenic CO2 & CH4 ; Stable and noble gas isotopes ; Mayotte ; Comoros
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-02
    Description: Environmental parameters drive seasonal soil CO2 efflux toward the atmosphere. However, their influence is not fully understood in contexts of high CO2 fluxes where CO2 accumulates in the subsurface. A prime example are volcanoes subject to continuous CO2 diffuse degassing rising from deep magmatic reservoirs, through the subsurface and up to the atmosphere. For many of these volcanoes where soil CO2 is monitored, a seasonal influence of the atmosphere and water table is observed but not characterized. Here, we compare variations of air temperature, atmospheric pressure, rainfall and water table level with near-surface soil CO2 concentration by performing a time-lagged detrended cross-correlation analysis on years-long time series from the volcanoes of Piton de la Fournaise and Mayotte. At Piton de la Fournaise, soil CO2 variations correlate best with air temperature variations (0.81) and water table variations (0.74). In Mayotte, soil CO2 variations correlate best with atmospheric pressure variations (−0.95). We propose that at Piton de la Fournaise, the thick vadose zone and high permeability favor CO2 transfer by thermal convection. Additionally, energy transfer is decoupled from mass transfer. Slow heat transfer from the atmosphere down to the accumulated CO2 layers in the subsurface results in a delayed influence of air temperature and of the water table level on the thermal gradient between the subsurface and the atmosphere, and consequently on the efficiency of the CO2 transfer. In Mayotte, we propose that the thin vadose zone and the presence of a network of large fractures favor CO2 transfer by barometric pumping.
    Description: Hatari Project INTERREG V Indian Ocean N° Synergie RE0023208
    Description: Published
    Description: e2023JG007409
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Air temperature, atmospheric pressure, and water table level influence soil CO2 concentrations at a seasonal scale ; The decoupling of heat and mass transfer in the subsurface induces a delayed response of soil CO2 concentrations to environmental forcing ; Volcanic emission of CO2
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...