ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
  • 1
    Publication Date: 2024-02-07
    Description: One of the major problems in the volcanic surveillance is how data from several techniques can be correlated and used to discriminate between possible precursors of volcanic eruptions and changes related to non-eruptive processes. Gas chemical surveys and measurements of SO 2 emission rates performed in the past (2006–2019) at Lastarria volcano in Northern Chile have revealed a persistent increment of magmatic sourced gas emissions since late November 2012, following a 13 years period of intense ground uplift. In this work, we provide new insights into the gas-chemical evolution of Lastarria’s fumarolic discharges obtained from direct sampling (2006–2019) and SO 2 emission rates using UV camera and DOAS instruments (2018–2019) and link these to pre-existing information on ground deformation (1998–2016) in order to determine the origin of observed degassing and ground deformation processes. We revise the four mechanisms originally proposed as alternatives by Lopez et al. (Geosphere, 2018, 14 (3), 983–1007) to explain the changes observed in the fluid geochemistry and ground deformation between 2009 and 2012, in order to explain major changes in gas-geochemistry over an extended period between 1998 and 2019. We hypothesize that a continuous sequence of processes explains the evolution in the fluid geochemistry of fumarolic discharges. Two mechanisms are responsible of the changes in the gas composition during the studied period, corresponding to a 1) deep magma chamber (7–15 km depth) pressurized by volatile exsolution (1998–2020), which is responsible of the large-scale deformation; followed by 2) a crystallization-induced degassing (2001–2020) and pressurization of the hydrothermal system (2003-early November 2012), where the former process induced the changes in the gas composition from hydrothermal-dominated to magmatic-dominated, whereas the last produced the small-scale deformation at Lastarria volcano. The changes in the gas composition since late November 2012, which were strongly dominated by magmatic volatiles, produced two consecutive processes: 1) acidification (late November 2012–2020) and 2) depletion (2019–2020) of the hydrothermal system. In this work we have shown that a long-term surveillance of the chemistry of fluid discharges provides valuable insights into underlying magmatic/volcanic processes, and consequently, for forecasting future eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2023-11-16
    Description: Lascar (5592 m a.s.l.) and Lastarria (5697 m a.s.l.) are Chilean active stratovolcanoes located in the Central Volcanic Zone (CVZ; 16°S to 28°S) that have developed on top of a 71 km thick continental crust. Independently of the similarities in their Plinian/Vulcanian eruptive styles, their complex magmatic feeding structures and the origins of their magmatic fluids still necessitate constraints in order to improve the reliability of geochemical monitoring. Here we investigate the petrography, bulk-rock chemistry, and mineral chemistry in products from the 1986–1993 explosive eruptive cycle at Lascar and from several Holocene eruptive sequences at Lastarria. These data are integratedwith measurements of the noble gas isotopes in fluid inclusions (FIs) of minerals fromthe same products as well as in fumarole gases. The geochemistry ofminerals and rocks shows that the studied products belong to high-K–calc-alkaline series typical of subduction-related settings, and provide evidence of differentiation,mixing, and crustal assimilation that are higher at Lastarria. The contribution of slab sediments and fluids to magma genesis in thewedge is limited, suggesting a homogeneous mantle beneath CVZ. The deepest crystallization processes occurred at variable levels of the plumbing systems according to the lithostatic equivalent depths estimated with mineral equilibrium geobarometers at Lascar (15–29 km) and Lastarria (~20–40 km). The 40Ar/36Ar and 4He/20Ne ratios in FIs and fumarole gases indicate the presence of some degree of air contamination in the fluids from both volcanoes. The 3He/4He values at Lascar (6.9–7.3 Ra) are relatively homogeneous and comparable to those of fumaroles, suggesting a main zone of magma crystallization and degassing. In contrast, the 3He/4He values at Lastarria (5.31–8.01 Ra) vary over a wide range, suggesting various magma storage levels and providing evidence of crustal contamination, as indicated by the rock chemistry.We argue thatmantle beneath the two volcanoes has a MORB-like signature of 3He/4He, while local crustal contamination explains the lower ratios measured at Lascar.
    Description: Published
    Description: 105615
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Lascar ; Lastarria ; noble gases ; Fluid inclusions ; Crustal contamination ; Mantle wedge ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...