ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Gravitationally consistent solutions of the Sea Level Equation from leakage‐corrected monthly‐mean GFZ RL06 Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‐On (GRACE‐FO) Stokes coefficients reveal that barystatic sea level averaged over the whole global ocean was rising by 1.72 mm a−1 during the period April 2002 until August 2016. This rate refers to a truely global ocean averaging domain that includes all polar and semienclosed seas. The result corresponds to 2.02 mm a−1 mean barystatic sea level rise in the open ocean with a 1,000 km coastal buffer zone as obtained from a direct spatial integration of monthly GRACE data. The bias of +0.3 mm a−1 is caused by below‐average barystatic sea level rise in close proximity to coastal mass losses induced by the smaller gravitational attraction of the remaining continental ice and water masses. Alternative spherical harmonics solutions from CSR, JPL, and TU Graz reveal open‐ocean rates between 1.94 and 2.08 mm a−1, thereby demonstrating that systematic differences among the processing centers are much reduced in the latest release. We introduce in this paper a new method to approximate spatial leakage from the differences of two differently filtered global gravity fields. A globally constant and time‐invariant scale factor required to obtain full leakage from those filter differences is found to be 3.9 for GFZ RL06 when filtered with DDK3, and lies between 3.9 and 4.4 for other processing centers. Spatial leakage is estimated for every month in terms of global grids, thereby providing also valuable information of intrabasin leakage that is potentially relevant for hydrologic and hydrometeorological applications.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Dobslaw et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_OBP).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing Ocean Bottom Pressure (OBP) variations provided at 1° latitude-longitude grids as defined over ocean areas. The OBP grids are provided in NetCDF format divided into yearly batches. The files each contain seven different variables:1) 'barslv': gravity-based barystatic sea-level pressure2) 'std_barslv': gravity-based barystatic sea-level pressure uncertainties3) 'resobp': gravity-based residual ocean circulation pressure resobp4) 'std_resobp': gravity-based residual ocean circulation pressure uncertainties5) 'leakage': apparent gravity-based bottom pressure due to continental leakage6) 'model_ocean': background-model ocean circulation pressure7) 'model_atmosphere': background-model atmospheric surface pressureThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/OBP
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ocean Bottom Pressure ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Boergens et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_TWS).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing Terrestrial Water Storage (TWS) anomalies provided at 1° latitude-longitude grids as defined over all continental regions except Greenland and Antarctica. The TWS anomaly grids are provided in NetCDF format divided into yearly batches. The files each contain four different variables:1) 'tws': gravity-based TWS2) 'std_tws': gravity-based TWS uncertainties3) 'leakage': spatial leakage contained in TWS4) 'model_atmosphere': background model atmospheric massThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/TWS
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-26
    Description: Abstract
    Description: The Global Gravity-based Groundwater Product (G3P) provides groundwater storage anomalies (GWSA) from a cross-cutting combination of GRACE/GRACE-FO-based terrestrial water storage (TWS) and storage compartments of the water cycle (WSCs) that are part of the Copernicus portfolio. The data set comprises gridded anomalies of groundwater, TWS, and the WSCs glacier, snow, soil moisture and surface water bodies plus layers containing uncertainty information for the individual data products. All WSCs are spatially filtered with a Gaussian filter to be compatible with TWS. Spatial coverage is global, except Greenland and Antarctica, with 0.5-degree resolution. Temporal coverage is from April 2002 to December 2020 with monthly temporal resolution. Gridded data sets are available as NetCDF files containing variables for the parameter value as anomaly in mm equivalent water height and the parameter’s uncertainty as mm equivalent water height. The latest version of the data is visualized at the GravIS portal: http://gravis.gfz-potsdam.de/gws. From GravIS, the data is also available as area averages for several large river basins and aquifers, as well as for climatically similar regions. G3P was funded by the EU Horizon 2020 programme in response to the call LC-SPACE-04-EO-2019-2020 “Copernicus evolution – Research activities in support of cross-cutting applications between Copernicus services” under grant agreement No. 870353. --------------------------------------------------------------------------------------------- Version History: 10 March 2023: Release of Version v1.11. This is the initial release of the data.
    Keywords: Terrestrial Water Storage ; Water Balance ; Satellite Gravimetry ; Copernicus ; Groundwater ; Groundwater Storage Variations ; Mass change ; Gravity Recovery And Climate Experiment ; GRACE ; GRACE Follow-on ; GRACE-FO ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 WATER TABLE ; environment 〉 natural environment 〉 terrestrial environment ; The Present
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...