ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (3)
  • New tectonic causes of volcano failure
  • 2020-2024  (3)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2023-08-29
    Description: A methodology to detect local incompleteness of macroseismic intensity data at the local scale is presented. In particular, the probability that undocumented effects actually occurred at a site is determined by considering intensity prediction equations (in their probabilistic form) integrated by observations relative to known events documented at surrounding sites. The outcomes of this analysis can be used to investigate how representative and known the seismic histories of localities are (i.e., the list of documented effects through time). The proposed approach is applied to the Italian area. The analysis shows that, at most of the considered sites, the effects of intensity ≥ 6 should most probably have occurred at least once, but they are not contained in the current version of the Italian macroseismic databases. In a few cases, instead, the lack of data may concern higher intensity levels (i.e., ≥ 8). The geographical distribution of potentially lost information reflects the heterogeneity of the seismic activity over the Italian territory.
    Description: Published
    Description: 1805–1816
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Macroseismology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-21
    Description: Italy has a long tradition of studies on the seismic history of the country and the neighboring areas. Several archives and databases dealing with historical earthquake data—primarily intensity data points—have been published and are constantly updated. Macroseismic fields of significant events are of foremost importance in assessing earthquake effects and for the evaluation of seismic hazards. Here, we adopt the U.S. Geological Survey (USGS)‐ShakeMap software to calculate the maps of strong ground shaking (shakemaps) of 79 historical earthquakes with magnitude ≥6 that have occurred in Italy between 1117 and 1968 C.E. We use the macroseismic data published in the Italian Macroseismic Database (DBMI15). The shakemaps have been determined using two different configurations. The first adopts the virtual intensity prediction equations approach (VIPE; i.e., a combination of ground‐motion models [GMMs] and ground‐motion intensity conversion equations [GMICEs]; Bindi, Pacor, et al., 2011; Oliveti et al., 2022b). The second exploits the intensity prediction equations (IPE; Pasolini, Albarello, et al., 2008; Lolli et al., 2019). The VIPE configuration has been found to provide more accurate results after appraisal through a cross‐validation analysis and has been applied for the generation of the ShakeMap Atlas. The resulting maps are published in the Istituto Nazionale di Geofisica e Vulcanologia (INGV) ShakeMap (see Data and Resources; Oliveti et al., 2023), and in the Italian Archive of Historical Earthquake Data (ASMI; see Data and Resources; Rovida et al., 2017) platforms.
    Description: In press
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-12
    Description: The macroseismic source parameters of earthquakes occurring within a sequence are strongly influenced by cumulative damage effects. When we deal with historical seismic sequences, in addition to the cumulative intensities, other intrinsic uncertainties due to the scarcity and indeterminacy of sources come into play. These issues imply that the parameterizations of the single earthquakes within a historical seismic sequence are not univocal and that all the uncertainties that are addressed when assessing macroseismic intensity should be carefully considered in the parameter estimation. In the light of these considerations, we performed some tests on the 2016–2017 and 1703 seismic sequences, which occurred in the same area in central Italy, to compute the macroseismic source parameters by means of two independent methods. Results show that the cumulative effects arising from multiple damaging earthquakes can cause biases in the intensity assessments, which affect the computed magnitude and epicentral locations. To reduce bias in macroseismic intensities due to cumulative damage, we illustrate a simple procedure, called cumulative intensity subtraction (CIS), which consists in discarding the localities strongly damaged by the early earthquakes of a sequence from the intensity distributions used for computing the macroseismic source parameters of the subsequent earthquakes. The outcomes show that, for the 2016 seismic sequence, the CIS approach provides locations in agreement with the instrumental epicenters and with the causative faults. For the 1703 sequence, the CIS approach along with explicit accounting for the indeterminacy in intensity assignments give a range of equally plausible solutions. The CIS represents an exploration of a simple strategy that stems from an attempt to give significance to macroseismic intensity in the presence of cumulative damage.
    Description: Published
    Description: 759–774
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Keywords: macroseismic intesity ; cumulative effects ; microseismic source parameters ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...