ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • 2020-2024  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: Key Points:  AUV mapping along the north rift identifies hummocky mounds with pillows, channelized, and inflated flows formed during the 2015 eruption.  Impulsive sounds formed by lava/seawater interaction track mound growth over a 28 day period with an average extrusion rate of 22-45 m3s-1.  The sounds record the history of flow advancement and inflation from multiple eruptive centers, and is used to infer volcanic activity style. Quantifying eruption dynamics in submarine environments is challenging. During the 2015 eruption of Axial Seamount, the formation of hummocky mounds along the north rift was accompanied by tens‐of‐thousands of impulsive acoustic signals generated by the interaction of lava and seawater. A catalog of these sounds was integrated with detailed seafloor mapping to better understand eruptive processes in time and space. Mounds grew over a period of 28 days with average extrusion rates of 22 to 45 m3s‐1. The most distant mounds, ~ 9.5 to 15.5 km down rift from the caldera, grew primarily over the first few days of the eruption. The focus of eruptive activity then retreated ~5 km toward the caldera where it was sustained. Mounds are constructed as a series of superimposed lobes formed through alternating periods of flow inflation, generating up to 30‐m‐thick hummocks, and periods of flow advancement, with 〈0.02 ms‐1 average speeds typically observed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Plate divergence along mid-ocean ridges is accommodated through faulting and magmatic accretion, and, at overlapping spreading centers (OSC), is distributed across two curvilinear overlapping ridge axes. One-meter resolution bathymetry acquired by autonomous underwater vehicles, combined with distribution and ages of lava flows, is used to: (1) analyze the spatial and temporal distribution of flows, faults, and fissures in the OSC between the distal south rift zone of Axial Seamount and the Vance Segment, (2) locate spreading axes, (3) calculate extension, and (4) determine the proportion of extension accommodated at the surface by faults and fissures versus volcanic extrusion over a period of ∼1300-1450 years. Our study reveals that in the recent history of the ridges, extension over a distance of 14 km across the Axial/Vance OSC was asymmetric in proportion and style: faults and fissures across 1-2 km of the Vance axial valley accommodated ∼3/4 of the spreading, whereas dike-fed eruptions contributed ∼1/4 of the extension and occurred across 4 km of the south rift of Axial Seamount.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...